ebook img

Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy PDF

0.56 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy ChristophHaase∗ LaboratoireSpe´cificationetVe´rification(LSV),CNRS E´coleNormaleSupe´rieure(ENS)deCachan,France [email protected] 4 1 0 Abstract burgerarithmetic;forthatreasonthecomplexityofPresburgerarith- 2 metichasextensivelybeenstudiedintheliteraturefromthe1970’s y Ibtuirsgesrhaorwitnhmtheatitcf,oir.ea.,niytsfirexsetdriciti>on0to,tih+eΣ1iq+u1a-nftriafigemreanltteronfatPiorenss- onwards.Inordertofullycapturethecomputationalcomplexityof a beginningwithanexistentialquantifier,iscompleteforΣEXP,the Presburgerarithmetic,BermanevenintroducedtheSTAmeasureon M i thecomplexityofadecisionproblem,sincePresburgerarithmetic i-thleveloftheweakEXPhierarchy,ananaloguetothepolynomial- “maynothaveprecisecomplexitycharacterisationsintermsofthe timehierarchyresidingbetweenNEXPandEXPSPACE.Thisre- usualtimeandtapemeasures”[3].TheclassSTA(s(n),t(n),a(n)) 2 sultcompletesthecomputationalcomplexitylandscapeforPres- istheclassofallproblemsoflengthnthatcanbedecidedbyan 1 burgerarithmetic,alineofresearchwhichdatesbacktotheseminal alternatingTuringmachineinspaces(n)andtimet(n)usinga(n) workbyFischer&Rabinin1974.Moreover,weapplysomeofthe alternations,where“∗”actsasawildcardinordertoindicatean ] techniquesdevelopedintheproofofthelowerboundinorderto O unboundedavailabilityofacertainresource.Basedonthework establishboundsonsetsofnaturalsdefinableintheΣ -fragment 1 by Fischer & Rabin [11] and Ferrante & Rackoff [10], Berman L ofPresburgerarithmetic:givenaΣ1-formulaΦ(x),itisshownthat establishedthefollowingresult. . thesetofnon-negativesolutionsisanultimatelyperiodicsetwhose s periodisatmostdoubly-exponentialandthatthisboundistight. c Proposition1(Berman[3]). Presburgerarithmeticiscompletefor [ CategoriesandSubjectDescriptors F.4.1[Mathematicallogic]: STA(∗,22nO(1),n). Computationallogic 2 In terms of the usual time and space measures, this settles v Keywords Presburgerarithmetic,boundedquantifieralternation, Presburgerarithmeticbetween2-NEXPand2-EXPSPACE.Despite 6 weakEXPhierarchy,ultimatelyperiodicsets,context-freecommu- thesehighcomputationalcosts,onthepositivesidewhenlooking 6 tativegrammars at fragments Presburger arithmetic becomes more manageable. 2 There are two dimensions in which we can constraint formulas 5 1. Introduction inordertoobtainfragmentsofPresburgerarithmetic:thenumber . 1 of quantifier alternations and the number of variables in each 0 P(cid:104)Nre,s0b,u1r,g+er,<ar(cid:105)i.thTmheistictheisortyhewafisrssth-oorwdenrtothbeoerdyecoifdathbelesbtryucPtruerse- quantifier block. For i,j ∈ N∪{∗}, let PA(i,j) denote the set 4 of formulas of the Σ -fragment of Presburger arithmetic1 such burger in his seminal paper in 1929 by providing a quantifier- i 1 that at most j different variables occur in each quantifier block, elimination procedure [31]. Presburger arithmetic is central to a : where“∗”isusedasawildcardforanunboundednumber.Hence, v vast number of different areas in computer science and is often Proposition1characterisesthecomputationalcomplexityofPA(∗,∗) i employedasatoolforshowingdecidabilityandcomplexityresults. X ThecentraldecisionproblemforPresburgerarithmeticisvalid- with n being the number of symbols required to write down theformula.Subsequently,PAandPA(i)abbreviatePA(∗,∗)and r ity,i.e.,todecidewhetheragivensentenceistruewithrespectto a thestandardinterpretationinarithmetic.Thetwomostprominent PA(i,∗),respectively. OneofthemostprominentfragmentsofPresburgerarithmeticis waystodecidevalidityareeitherquantifier-eliminationbased[8]or itsexistentialorquantifier-freefragment,whichiscomputationally automatabased[9,23,40].AnydecisionprocedureforPresburger notmoreexpensivethanstandardBooleansatisfiability. arithmeticisinherentlytiedtothecomputationalcomplexityofPres- Proposition2(Scarpellini[33],Borosh&Treybing[5]). Forany ∗TheauthorissupportedbytheFrenchAgenceNationaledelaRecherche fixedj ∈N,PA(1,j)isinP[33].PA(1)isNP-complete[5]. (ANR),REACHARD(grantANR-11-BS02-001). Duetoitscomparablylowcomputationalcomplexity,quantifier- freePresburgerarithmeticisthefragmentthatismostcommonly found in application areas which aim at a practical impact. The Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalor classroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributed existentialfragmentofPresburgerarithmeticcanevenbeextended forprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitation withafulldivisibilitypredicatewhileretainingdecidability[25,26]. onthefirstpage.CopyrightsforcomponentsofthisworkownedbyothersthanACM AnothersubclassofPresburgerarithmeticwhichhasextensively mustbehonored.Abstractingwithcreditispermitted.Tocopyotherwise,orrepublish, been studied is obtained by allowing for an arbitrary but fixed topostonserversortoredistributetolists,requirespriorspecificpermissionand/ora [email protected]. numberofquantifieralternations. CSL-LICS2014, July14–18,2014,Vienna,Austria. Copyright(cid:13)c 2014ACM978-1-4503-2886-9...$15.00. http://dx.doi.org/10.1145/2603088.2603092 1AllresultsobtainedaresymmetricwhenconsideringΠi-formulas. Proposition 3 (Gra¨del [17], Scho¨ning [34], Reddy & Love- systems [15] or in formal language theory [20]. For instance, land [32]). For any fixed i > 0 and j > 2, PA(i+1,j) is ΣP- analysingsuchboundshasbeencrucialinordertoobtainoptimal i complete2[17,34].PA(i)isinSTA(∗,2nO(i),i)[32]. complexityresultsformodel-checkingproblemsofaclassofone- counterautomatain[15].Inmoredetail,in[15]ithasbeenshown Thus, when fixing the number of quantifier alternations, the thatthesetofnon-negativeweightsofpathsbetweentwonodesina complexity of Presburger arithmetic decreases roughly by one weightedgraphisultimatelyperiodicwithaperiodthatisatmost exponent, and when additionally fixing the number of variables, singly-exponentialbounded.AresultbySeidletal.[35]onParikh we obtain every level of the polynomial-time hierarchy. Notice imagesofnon-deterministicfinite-stateautomataimplicitlystates thatthereisanobviousgap:acompletenessresultforPresburger thatthoseultimatelyperiodicsetsaredefinableintheΣ -fragment 1 arithmetic with a fixed number of quantifier alternations and an of Presburger arithmetic. It would thus be desirable to establish arbitrarynumberofvariablesineachquantifierblockismissing. a generic upper bound for ultimately periodic sets definable in The study of lower bounds for PA(i) goes back to the work PA(1)yieldingthesameoptimalbounds.Inthiscontext,Theorem2 ofFu¨rer[13],whoshowedaNEXPlowerboundforsomefixed providesanegativeresultinthatitshowsthatageneralboundon i > 1. Later, Gra¨del showed NEXP-hardness and EXPSPACE ultimatelyperiodicsetsdefinableinPA(1)cannotyieldtheoptimal membership of PA(2), but tight lower and upper bounds for the boundsrequiredfornaturalconcreteultimatelyperiodicsetslike wholeclassofPA(i)formulashavenotyetbeenestablished.The thoseconsideredin[15]. purposeofthefirstpartofthispaperistoclosethisgapandestablish Thispaperisstructuredasfollows.InSection2weprovidemost thefollowingtheorem. oftheformaldefinitionsrequiredinthispaper;howeverthereaderis expectedtohavesomeleveloffamiliaritywithstandardnotionsand Theorem1. Foranyfixedi>0,theΣ -fragmentofPresburger i+1 conceptsfromlinearalgebra,integerprogramming,first-orderlogic arithmeticisΣEXP-complete. i andcomputationalcomplexity.Eventhoughweprovideaslightly Here,ΣEXPdenotesthei-thleveloftheweakEXPhierarchy[19], moreelaboratedaccountonsuccinctencodingsviaBooleancircuits, i ananaloguetothepolynomial-timehierarchy[36]residingbetween it will be beneficial to the reader to be familiar with Chapters 8 NEXP and EXPSPACE; a formal definition will be provided in and20inPapadimitriou’sbookoncomputationalcomplexity[28]. Section 2.4. Equivalently, we obtain that PA(i+1) is complete Section 3is thengoing toestablish the lower andupper bounds forSTA(∗,2nO(i),i).Determiningtheprecisecomplexityofthe ofTheorem1,andTheorem2isshowninSection4.Thepaper concludesinSection5.Subsequenttothebibliography,aproofofa Σ -fragmentofPresburgerarithmeticforafixedihasbeenlisted i technicalcharacterisationoftheweakEXPhierarchyisoutlinedin as a problem that “deserves to be investigated” by Compton & theappendixforthesakeofcompleteness. Henson[7,Prob.10.14].However,aspointedoutin[7],theirgeneric methodsforprovinglowerboundsdonotseemtobeapplicableto thisfragment,andourhardnessresultisbasedonratherspecific 2. Preliminaries propertiesof,forinstance,distributionsofprimenumbers. 2.1 Generalnotation The second part of the paper diverts from the first part and focusesontheΣ -fragmentofPresburgerarithmetic.Morespecif- By Z and N we denote the set of integers and natural numbers, 1 ically, we consider sets of naturals definable by formulas in the respectively.Wewillusuallyusea,b,cfornumbersinZandN. Σ1-fragmentofPresburgerarithmeticopeninonevariable.Given Givena∈N,wedefine[a]d=ef{0,...a−1}.GivensetsM,N ⊆N, aΣ1-formulaΦ(x),denoteby Φ(x) thesetofthosea∈Nsuch as is standard M + N d=ef {m + n : m ∈ M,n ∈ N} and thatreplacingxwithainΦ(x)i(cid:74)svalid(cid:75).Itiswell-knownthat Φ(x) isanultimatelyperiodicset,seee.g.[4].AsetN ⊆Nisult(cid:74)imately(cid:75) M·N d=ef{mn:m∈M,n∈N}.Moreover,wewillusestandard periodicifthereexistsathresholdt∈N,abaseB ⊆{0,...t−1}, notationforintegerintervalsand,e.g.,fora ≤ b ∈ Ndenoteby aperiodp ∈ N,andasetofresidueclassesR ⊆ {0,...p−1} [a,b)theset{a,...b−1}.Forvectorsa=(a1,...,an)∈Zn,we suchthatN =U(t,p,B,R)with willdenoteby(cid:107)a(cid:107)thenormofa,whichisthemaximumabsolute valueofallcomponentsofa,i.e.,(cid:107)a(cid:107) d=ef max{|a |} .For U(t,p,B,R)d=efB∪{t+r+kp:r∈R,k≥0}. m×n integer matrices A, (cid:107)A(cid:107) denotes the maximium1≤ia≤bnsolute valueofallcomponentsofA.Finally,givenasetM ⊆ Zn,we GivenaΣ -formulaΦ(x),byapplyingsomeinsightsfromthe 1 denoteby(cid:107)M(cid:107)themaximumofthenormofallelementsofM.All firstpart,wecanestablishadoubly-exponentialupperboundon functionsinthispaperareassumedtomapnon-negativeintegers theperiodoftheultimatelyperiodicsetequivalentto Φ(x) and showthatthisboundistight,whichiscapturedbythes(cid:74)econd(cid:75)main tonon-negativeintegers.Unlessstatedotherwise,weassumeall integersinthispapertobeencodedinbinary,i.e.,thesizeorlength theoremofthispaper. towritedowna∈ZisO(log|a|). Theorem2. ThereexistsafamilyofΣ -formulasofPresburger 1 arithmetic (Φ (x)) such that each Φ (x) is a PA(1,O(n)) 2.2 PresburgerArithmetic n n>0 n formula with |Φn(x)| ∈ O(n2) and Φn(x) is an ultimately Usually, x,y,z will denote first-order variables, and x,y,z vec- periodicsetwithperiodpn ∈22Ω(n).Mo(cid:74)reoverf(cid:75)oranyΣ1-formula tors or tuples of first-order variables. Let x = (x1,...,xn) be Φ(x),wehave Φ(x) = U(t,p,B,R)suchthatt ∈ 2poly(|Φ(x)|) ann-tupleoffirst-ordervariables.Inthispaper,formulasofPres- andp∈22poly(|Φ(cid:74)(x)|).(cid:75) burgerarithmeticarestandardfirst-orderformulasoverthestruc- ture(cid:104)N,0,1,+,<(cid:105)obtainedfromatomicexpressionsoftheform The most interesting part about this theorem is the doubly- p(x)<b,wherep(x)isalinearmultivariatepolynomialwithinte- exponentiallowerboundoftheperiodofultimatelyperiodicsets gercoefficientsandabsolutetermzero,andb∈Z.Ifthedimension definable by PA(1) formulas. Establishing bounds on constants ofxisclearfromthecontext,forbrevitywewilloftenomitstating of ultimately periodic sets naturally occurs when analysing the itexplicitly.Leta=(a ,...,a )∈NnandΦ(x)beopeninthe 1 n computationalcomplexityofdecisionproblemsforinfinite-state first-ordervariablesx,wedenotebyΦ(a/x)theclosedformula obtainedfromreplacingeveryoccurrenceofx inΦ(x)witha .By i i 2Inordertoestablishhardness,j > 2isonlyrequiredontheinnermost Φ(x) wedenotetheset{a∈Nn :Φ(a/x)isvalid}.Thesize|Φ| quantifier. (cid:74)ofafo(cid:75)rmulaofPresburgerarithmeticisdefinedasthenumberof symbolsrequiredtowriteitdown,andthenorm(cid:107)Φ(cid:107)isthelargest Theaforementionedtimehierarchiesarenowdefinedas absolutevalueofallconstantsoccurringinΦ. ΣP d=efΠP d=efP ΣEXP d=efΠEXP d=efEXP 0 0 0 0 Remark. Fornotationalconvenience,whenstatingconcreteformu- ΣP d=efNPΣPi ΣEXP d=efNEXPΣPi laswewillpermitourselvestouseatomicformulasp(x) < q(x) i+1 i+1 forlinearpolynomialsp(x),q(x).Moreover,allresultsonthecom- ΠP d=efcoNPΣPi ΠEXP d=efcoNEXPΣPi i+1 i+1 plexityofvalidityofformulasofPresburgerarithmeticcarryover ifweassumeunaryencodingofnumbers,sincebinaryencoding PH d=ef (cid:91)ΣPi EXPHd=ef (cid:91)ΣEiXP. ofnumberscanbe“simulated”bytheintroductionofadditional i≥0 i≥0 first-order variables and repeated multiplication by two, causing For our lower bounds, we will rely on the following equivalent onlyasub-quadraticblowupintheformulasize.Inaddition,an characterisationofΣEXP. equalitypredicate“=”canbeexpressedintermsof<causinga i linearblowup,sincex=y↔x<y+1∧y<x+1.Likewise, Lemma1. Foranyi>0,alanguageL⊆{0,1}∗isinΣEXPiff i x > y andx < y < z abbreviatey < xandx < y∧y < z, thereexistsapolynomialqandapredicateR⊆({0,1}∗)i+1such respectively. thatforanyw∈{0,1}n, 2.3 Semi-LinearSetsandSystemsofLinearDiophantine w∈Liff∃w1 ∈{0,1}2q(n).∀w2 ∈{0,1}2q(n)··· Inequalities ···Q w ∈{0,1}2q(n).R(w,w ,...,w ) i i 1 i AcentralresultduetoGinsburgandSpanierstatesthatthesetsof andR(w,w ,...,w )canbedecidedindeterministicpolynomial naturalnumbersdefinablebyaformulaofPresburgerarithmetic 1 i time. open in n variables are the n-dimensional semi-linear sets [14], whichwejustcallsemi-linearsetsifthedimensionisclearfrom Despitebeinginthespiritofanelementaryresultoncomputa- thecontext.Asemi-linearsetisafiniteunionoflinearsets.The tionalcomplexity,theauthorwasunabletofindaformalproofof latteraredefinedintermsofabasevectorb∈Nnandafiniteset Lemma1inthestandardliterature.Itissomewhatstatedinformally ofperiodvectorsP ={p1,...pk}⊆Nn,anddefinetheset withoutaproofin[19].Inordertokeepthispaperself-contained andforthereader’sconvenience,aproofsketchofLemma1based L(b;P)d=efb+λ1p1+···λkpk, λi ∈N,1≤i≤k. onaproofofananaloguecharacterisationofthepolynomial-time hierarchygivenin[2]isprovidedintheappendix. LetAbeanm×nintegermatrixandc ∈ Zm.Asystemof linearDiophantineinequalitiesisgivenasS :Ax≥c.Thesize|S| 2.5 BooleanCircuits ofSisthenumberofsymbolsrequiredtowritedownSassuming Astandardapproachtoraisethecomplexityofaproblemknownto binaryencodingofnumbers.ThesetofpositivesolutionsofS is denotedby S ⊆ Nn andisthesetofalln-tuplessuchthatthe becompleteforacomplexityclassbyoneexponentistosuccinctly inequalities(cid:74)ine(cid:75)veryrowofShold. representtheinput,seee.g.[16,29].Awell-knownconceptisto representtheinputbyBooleancircuits.Inthispaper,fortechnical The following proposition is due to Frank & Tardos and es- convenienceweadaptthedefinitionprovidedin[16]. tablishesastronglypolynomial-timealgorithmforthefeasibility problemofasystemoflinearDiophantineinequalitiesinafixed Definition 1. A Boolean circuit C of size r with n ≤ r inputs dimension,i.e.,decidingwhether S (cid:54)=∅. is a function f : [r] → {&,(cid:107),∼,↑,↓ } × [r] × [r], where 1 (cid:74) (cid:75) f(i)=(t,j,k)iffthegatewithindexiisoftypet,i.e.,anand,or, Proposition4(Frank&Tardos[12]). LetS :Ax≥cbeasystem not,inputorconstantgate,respectively,andj,k<iareinputsof oflinearDiophantineinequalitiessuchthatAisanm×nmatrix. thegate,unlesst=∼inwhichcasewerequirej =k. ThenfeasibilityofScanbedecidedusingn2.5n+o(n)|S|arithmetic operationsandspacepolynomialin|S|. We identify each gate of C with an index from [r], and by convention the first n ≤ r gates are input-gates, and the r-th Whenweareinterestedinrepresentingthesetofallsolutionsof gate,i.e.,thegatewithindexr−1,istreatedastheoutputgate S,wewillemploythefollowingproposition,whichprovidesbounds ofC.Moreoverfortechnicalconvenience,wesometimesidentify onthesemi-linearrepresentationof S andisaconsequenceof the various types of the gates by natural numbers ordered as in Corollary1in[30]. (cid:74) (cid:75) Definition1,i.e.,&isidentifiedas0,(cid:107)as1,etc.Byusingconstant gatesasgateswithconstantvalue1,aninputw ∈ {0,1}n toC Proposition5(Pottier[30]). LetS :Ax≥cbeasystemoflinear inducesauniqueevaluationmappinge : [r] → {0,1}defined w Diophantine inequalities such that A is an m×n matrix. Then in the obvious way, and C evaluates to true (false) on input w (cid:83) S = i∈IL(bi;Pi)suchthatforalli∈I, if ew(r − 1) = 1 (ew(r − 1) = 0). For brevity, we define (cid:74) (cid:75) (cid:107)b (cid:107),(cid:107)P (cid:107)≤(n(cid:107)A(cid:107)+(cid:107)c(cid:107)+2)m+n. C(w)d=efew(r−1),andifm1,...,mk ∈NthenC(m1,...mk)is i i theoutputofC(w1···wk),whereeachwi ∈{0,1}(cid:100)logmi(cid:101)isthe binary,ifnecessarypadded,representationofm . i 2.4 TimeHierarchies For the remainder of this section, we will briefly recall and Let us recall the definitions of the polynomial-time hierarchy elaborateonsomeresultsandconceptsaboutcircuitsandsuccinct PH[36]andtheweakEXPhierarchyEXPH[19]intermsoforacle encodingsfromPapadimitriou’sbook[28]oncomputationalcom- complexityclasses.Asusual, plexity.GivenacircuitCandaninputw∈{0,1}nforsomen≥0, itiswell-knownthatdeterminingC(w)isP-complete[28,Thm. P= (cid:91) DTIME(nk) EXP= (cid:91) DTIME(2nk) 8.1].In[28],theproofofP-hardnessisestablishedbyshowingthat thecomputationtableofapolynomial-timeTuringmachinecanbe k>0 k>0 NP= (cid:91) NTIME(nk) NEXP= (cid:91) NTIME(2nk). emnaccohdineedMas,aaBcoomolpeuatnatcioirnctuaibt.leFiosrananff(n(n)×)-tfim(ne)-bgoriudnodfecdeTllsurTing i,j k>0 k>0 fromanalphabetthatallowsforuniquelyencodingconfigurationsof .. .. .. .. .. .. intothethreeframedgray-shadedboxesonthebottomofthedashed . . . . . . boxes.Here,weassumethatthreebitsaresufficienttorepresent (cid:46) 1 1 0 (cid:3) (cid:3) (cid:46) 1 1q1 1q0 (cid:3) (cid:3) tchoedeadlpahsa1b1et1.oCfothnesecqoumenptulyta,ttihoengtaatbelsewoifthMinwd,eaxn(d3,th4a)t,((cid:46)3q,05i)saennd- (cid:46)(cid:46)q0 11q2 00 11 (cid:3)(cid:3) (cid:3)(cid:3) (a3re,6g)a,treespwreistehnctionngsttahnetcveallluTe1o,1neo,fathseincdoimcapteudtatiinonFitgaubrlee2o.fNMoww, wewantthevaluesofthecellsT ,T ,etc.ofthecomputation 1,2 1,3 Figure1. Graphicalillustrationofacomputationtableofatime- tableofMw tobeequivalenttow1···wn,whicharerepresented TbohuencdoendtTroulrisntagtemaanchdintheeMhe.aFdorpeoxsaitmiopnleo,fhMereiwseinhdaivceaTte2d,2b=yt0apq2e. bcoyrrtehsepognadteinsgwtiothT1in,2daicnedsT(10,,30h)a,v.e..in(d0i,cie2sq((n3),)1.5T),h(e3g,1at6e)s,(in3,D17w) symbols with some q as subscript. The four gray-shaded cells and(3,26),(3,27),(3,28),respectively.Thosegateshavethegates i illustratethatsuccessivecellsonlydependonthreeprecedingcells. (0,0)and(0,1)astheirinputs,respectively.Supposethatinour encoding1isrepresentedas101and0as010,thesequenceof(cid:107), ∼and(cid:107)gatesensuresthat1ismappedto101and0to010.Con- M suchthattheconfigurationofM instepiwhilerunningonwis sequently,thegates(3,15),(3,16),(3,17)cancorrectlytransfer encodedinthei-throw.Figure1graphicallyillustratestheconcept thealphabetsymbols{0,1}ofMwintotheinternalrepresentation ofacomputationtable,where0and1arealphabetsymbolsofM, ofthecomputationtable,andinparticularcopythefirstsymbol and(cid:46)and(cid:3)areleftdelimitersandblanksymbols,respectively.The oftheinputstringw1···wiintotheinternalrepresentationofthe crucialfactforencodingcomputationtablesasBooleancircuitsis computationtable.IntheexampleinFigure2,thegateswithindex thatfori,j >1,thesymbolatT onlydependsonafixednumber (3,15),(3,16),(3,17)wouldoutput1,0and1,respectively,since i,j ofcells,namelyT ,T andT ,illustratedbythe thegate(0,0)hasvalue1whichcorrespondstothefirstsymbol i−1,j−1 i−1,j i−1,j+1 gray-shadedcellsinFigure1.Itisthenclearthatthealphabetofa oftheinputstringw1.Asstatedbefore,inourreductionthisvalue computationtablecanbeencodedintoabinaryalphabetoftruth isprovidedon-the-fly.Therestofthereductionfollowsstandard values,andthataconstantbasiccircuitcanbeconstructedfrom arguments.EachdashedboxcontainscircuitsT1,T2andT3which M whichensuresthatthevaluesofthecellsarecorrectlypropa- computetheconsecutivecellofthesimulatedcomputationtableof gatedalongthey-axis.ItthenfollowsthatM acceptswiffthere Mw,i.e.,thevaluesofthethreegatesrepresentingthiscell.The existsacomputationtableendinginanacceptingstateiffthecircuit dashedboxesontheleftusedifferentcircuitsU1,U2andU3since encodingthiscomputationtableevaluatestotrue. theydonothavealeftneighbor.Allunusedgatescanassumedto Inthenextsection,forourlowerboundwewillapplyLemma1, bedummygates,i.e.gateswithconstantvalue1,asindicatedin whichentailsdeciding(w,w1,...,wi)∈R,wherethewj areof Figure2.ItfollowsthatMwaccepts(w1,...,wi)iffCwevaluates sizeexponentialinn=|w|.LetM beapolynomial-timeTuring totrueontheinputprovided,i.e.,thevalueofthegatewiththe w machinedecidingRforafixedw.Thew1,...wj willimplicitlybe highestindexofCwisequalto1. codedintonaturalnumbers,soitwillnotbepossibletoconstruct InordertoencodeCwsuccinctly,itisclearthatduetotheregular aBooleancircuitCw upfrontthatcanevaluateMw ontheinput structureofCw,thetypeandinputgatestoanygatecanbecomputed w ,...w ofexponentialsize,sincewearerequiredtoestablish fromagivenindexofagatebyapolynomial-timealgorithm.The 1 j a polynomial-time reduction. Instead, we will succinctly encode circuitDw cannowbetakenasthecircuitcorrespondingtothis C viaanotherBooleancircuitD .Moreprecisely,C isencoded algorithm. w w w viaD asfollows:D has3r(n)+3inputgatesforsomefixed w w polynomialrdependingonMwsuchthatfori,j,k∈[2r(n)]and 3. CompletenessoftheΣi+1-Fragmentof t ∈ [5],Dw(t,i,j,k) = 1iffthedefiningfunctionf ofCw gives PresburgerArithmeticforΣEXP i f(i)=(t,j,k),i.e.,thatthegatewithindexiofC isoftypetand w hasinputgateswithindexjandk.Inparticular,Dwandhenceforth Inthissection,weshowthatPA(i+1)isΣEiXP-completeforevery C onlydependonwandM,andareindependentofw ,...w . fixed i > 0. We begin with the lower bound and first note that w 1 i Notethatwecanviewanassignmentoftruthvaluestothegatesof it is not possible to adapt Berman’s hardness proof [3] in order C asastringoflength2r(n). to get the desired result, since it relies on a trick by Fischer & w More generally, it is known that if C with no input gates is Rabin[11]inordertoperformarithmeticoperationsonabounded succinctlygivenbysomecircuitD,determiningwhetherCevaluates intervaloverlargenumberswhichlinearlyincreasesthenumberof to true is EXP-complete [28, Thm. 20.2 & Cor. 2]. The idea quantifieralternations.Instead,wewillpartlyadaptconceptsand underlyingthehardnessproofisastraight-forwardgeneralisation ideasintroducedbyGra¨delinhishardnessproofforPA(2)in[18] of the approach outlined in the paragraph above. The circuit C and Gottlob, Leone & Veith in [16]. Roughly speaking, we aim encodesthecomputationtableofanEXPTuringmachineM.Since for“implementing”Lemma1viaaPA(i+1)formula,whichwill theindicesofthegatesofC canberepresentedinbinary,viaD entailencodingbitstringsofexponentialsizeintonaturalnumbers we can encode C by implicitly encoding an exponential number and evaluating Boolean circuits in Presburger arithmetic on-the- oftheconstantbasiccircuitensuringproperpropagationbetween fly. The upper bound does not follow immediately and requires consecutivecells.Thisapproachcannowbeadaptedforourpurpose, combiningsolutionintervalsestablishedbyWeispfenningin[38] i.e.,toevaluateapolynomial-timeTuringmachineonaninputof withProposition4. exponential size. The major challenge is to transfer input to the 3.1 LowerBounds succinctlyencodedcircuiton-the-fly. ReferringtoLemma1andgivenM asabove,wecanconstruct Thegoalofthissectionistoprovethefollowingproposition. w inlogarithmicspaceaBooleancircuitD encodingC suchthat w w Proposition6. LetL⊆{0,1}∗bealanguageinΣEXP,i>0and theinput(w1,...,wi)toCwisobtainedfromthefirsti2q(n)gates, w∈{0,1}∗.Thereexistsapolynomial-timecomputiablePA(i+1) andC encodesacomputationtableofM onthisinput.Figure2 w w formulaΦ suchthatw∈LiffΦ isvalid. illustrateshowthiscanberealised.EachboxinFigure2isagate, L,w L,w andacellofthecomputationtableofM whilebeingexecutedon Tothisend,weemploythecharacterisationofΣEXPinLemma1. w i (w ,...,w )isencodedintothedashedboxes,ormorespecifically, LetM bethedeterministicpolynomial-timeTuringmachinedecid- 1 n Figure2. IllustrationoftheapproachofhowtosuccinctlyencodeaBooleancircuitencodingthecomputationtableofapolynomial-time Turingmachineonaninputofexponentialsize.Eachsquarerepresentsagate,allgatesnotsurroundedbyboxesareassumedtobegateswith constantvalue1. ingRfromLemma1,andletM besuchaTuringmachinedecid- implicitlyreplacedby∃x.¬(ϕ¯(x,y)),and¬(ϕ¯(x,y))istreated w ingRforafixedinputw∈{0,1}n,whichcanbecomputedfrom inthesamewayifitisnotyetquantifier-free.Inthisway,wecan M inlogarithmicspace.Thebitstringsw tow fromLemma1 alwaysmakesuretoresultinΣ -orΠ -formulas. 1 i 1 1 constitutingtheinputtoM arerepresentedinourreductionvia We now turn towards the details of our reduction and begin w naturalnumbersassignedtofirst-ordervariablesx=(x ,...,x ). with discussing the encoding of bit strings as natural numbers 1 i Thepreciseencodingofaw viax isdiscussedbelow.Fornow,it weusesubsequently.TheencodingweuseisduetoGra¨del[18]. j j isonlyimportanttomentionthatnoteverynaturalnumberencodes In his NEXP lower bound for PA(2) he exploits a result due to abitstring.Letusfocusonthehigh-levelstructureofΦL,w: Ingham [6, 22] that for any sufficiently large3 i ∈ N there is at least one prime in the interval [i3,(i+1)3). Given a bit string Φ d=ef∃x .∀x ···Q x . (cid:94) Ψ (x )∧ w=b1···bn ∈{0,1}n,anaturalnumbera∈Nencodeswiffor L,w 1 2 i i valid,r(n) j all1≤i≤nand 1≤j≤i,jodd (cid:16) (cid:94) (cid:17) forallprimesp∈[i3,(i+1)3):a≡bi modp. ∧ Ψ (x ) →Ψ (x ,...,x ). (1) valid,r(n) j Mw 1 i The existence of such an a is then guaranteed by the Chinese 1≤j≤i,jeven remainder theorem. Given a fixed n > 0, we call a ∈ N a Unsurprisingly,thealternationofquantifiersinLemma1isreflected valid encoding if for every 1 ≤ i ≤ n, either a ≡ 0modp or bythealternationofquantifiersin(1),soQ = ∃ifiisoddand a≡1modpforallprimenumbersp∈[i3,(i+1)3). i Q =∀ifiiseven.TheformulaΨ (x )isaΠ -formula, Inordertoenabletheextractionofbitsofbitstringsencodedas i valid,r(n) i 1 andΨ (x ,...,x )isaformulaintheBooleanclosureofΣ if naturals,weshowhowtocheckfordivisibilitywithanaturalnumber Mw 1 i 1 iisoddandaΣ -formulaifiiseven.Thefirstconjunctensures whosenumberofbitsisfixed.Next,weshowhowtoevaluatea 1 thattheexistentiallyquantifiedvariablesrepresentencodingsofbit BooleancircuitinPresburgerarithmetic.Thisservestwopurposes: stringsandthesecondconjunctthat,undertheadditionalassumption first, it allows for deciding if a given number lies in an interval thattheuniversallyquantifiedvariablesencodevalidbitstringsas [i3,(i+3)3)andfortestingwhetheragivennumberisaprimedue well,M acceptsthebitstringsencodedinx ,...,x .Forthegiven totheAKSprimalitytest[1].Second,itallowsforsimulatingM w 1 i w w∈{0,1}n,thoseformulasareconcreteinstancesofafamilyof discussedaboveonaninputofexponentialsizeusingitssuccinct formulas,andr(n)isanindexinthisfamilyforsomepolynomial encodingviaacircuitasdiscussedinSection2.5.Puttingeverything r(n)whichdominatesq(n)inLemma1andismademoreprecise togethereventuallyyieldsthedesiredreduction. atalaterstage.Consequently,forafixedi>0,wehavethatΦ Webeginwithafamilyofquantifier-freeformulasΦ (x,x) L,w bin,n isaPA(i+1)formula. suchthatgivenb∈{0,1}nandb∈N,Φ (b,b)holdsifbis bin,n In our reduction, we have to take extra care to prevent the thebinaryrepresentationofb.Consequently,thisformulaimplicitly “accidental”introductionofquantifieralternations.Ingeneralwhen constraintsbsuchthatb∈[2n]: pnreouvtridailnfgorfmorumlausl,asw,hwicehadaraeptoGperna¨dpeol’lsynapopmroiaalclyheinqu[1iv8a]leanntdΣpr1o-vaindde Φbin,n(x,x)d=ef (cid:94) (xi =0∨xi =1)∧x= (cid:88) 2ixi. (2) Π1-formulas. This ensures that, for instance, we do not have to i∈[n] i∈[n] careaboutwhetherwecouldpossiblyintroduceanewquantifier Next,weprovideafamilyofneutralformulasΦ (x,y)such mod,n alternationifaformulaisusedontheleft-handsideofanimplication. thatfora,bwithb ∈ [2n],Φ (a,b)holdsiffa ≡ 0modb. mod,n WdehneontepbryovΦ¯id(ixn)g=an∀eyut.rϕ¯al(xΣ,1y-f)oirtmsnuelautΦra(lxe)qu=iv∃alyen.ϕtΠ(x1,cyo)u,nwteerpwairltl. Etiossne.nItniaclolyn,tΦramstotdo,na(xfo,rym)urleaawlisiethstahfeosrammuelapfuorrpbooseungdiveednminul[t1ip8l]i,cait- For the sake of consistent naming, whenever Φ(x) occurs as a subformulainsomeotherformula,weimplicitlyassumethatitis 3Cheng[6]providesexplicitboundsonIngham’sresult[22]andshowsthat appropriatelyreplacedsuchthattheresultingformulaiseitheraΣ1- thisstatementholdsforalli∈Nsuchthati>2215.Asin[18],forbrevity oraΠ1-formula,dependingonthecontext.Likewise,ifforinstance wewilluseIngham’sresultasifitweretrueforalli>0.Itwillbeclear Φ(x)occursasanegatedsubformulainaformulathatissupposed thatwecouldaddCheng’soffsettoallnumbersinvolved,causingaconstant to be existentially quantified, we assume that this subformula is blowuponly. isnotrecursivelydefinedandofsizeO(n)asopposedtoO(nlogn) ThefirstlineofΦ (x,y)convertsxandyintotheirbinary prime,n whenbinaryencodingofnumbersisassumed.Thelatterfactwillbe representation. Next, the second line first concatenates these bit usefulinSection4.Theunderlyingideaofthesubsequentdefinitions representationsviatheadditionalvariablezbyappropriatelyshifting isthatifthebinaryexpansionofbisb=(cid:80)i∈[n]2ibiandbk=a the value of y by m bits, and finally z is passed to Cprime,n. forsomek ≥ 0thenacanbewrittenasa = (cid:80)i∈[n]2iai with Cao∈ns[ebq3,u(ebnt+ly,1w)3e).havethatΦprime,n(a,b)holdsiffaisprimeand a =kb : i i Wearenowinapositioninwhichwecandefineafamilyof Φ (x,y,k)d=ef (cid:94) (y =0→x =0∧y =1→x =k) Π -formulasΨ (x)usedin(1)thatallowfortestingwhether dig,n i i i i 1 valid,n some a ∈ N represents a valid respectively invalid encoding of i∈[n] a bit string of length 2n. For valid encodings, we wish to make Φmod,n(x,y)d=ef∃x.∃y.∃k.Φbin,n(y,y)∧ surethatallprimesineveryrelevantinterval[b3,(b+1)3)have ∧Φ (x,y,k)∧x= (cid:88) 2ix (3) uniformresidueclassesinaforall1 ≤ b ≤ 2n,i.e.,foranytwo dig,n i primesp ,p ∈ [b3,(b+1)3)weeitherhavea ≡ 0modp and 1 2 1 i∈[n] a ≡ 0modp ,ora−1 ≡ 0modp anda−1 ≡ 0modp .Let 2 1 2 Φ¯ (x,y)d=ef∀x.∀y.∀k.(cid:0)Φ (y,y)∧ mbeasabove, mod,n bin,n ∧Φ (x,y,k)(cid:1)→x= (cid:88) 2ix . dig,n i Ψ (x)d=ef∀y.∀p .∀p .(cid:0)1≤y≤2n∧ valid,n 1 2 i∈[n] (cid:1) ∧Φ (p ,y)∧Φ (p ,y) → WenowturntowardsevaluatingBooleancircuitswithsuitable prime,n+1 1 prime,n+1 2 (cid:0) formulas in Presburger arithmetic. The subsequent formulas for → (Φmod,m+3(x,p1)∧Φmod,m+3(x,p2))∨ evaluatingacircuitCwithninputandrgatesintotalareessentially (cid:1) ∨(Φ (x−1,p )∧Φ (x−1,p )) . an adaption of a construction given by Gottlob, Leone & Veith mod,m+3 1 mod,m+3 2 in [16]. It is easily checked that for a ∈ [2n], ΦC(a) holds iff In order to complete our hardness proof for ΣEXP for a sub- C(a)=1.InΦ ,theinputtoCisencodedviaadimensionnvector i C sequently fixed i > 0 via its characterisation in Lemma 1 and offirst-ordervariablesxandtheBooleanassignmenttothegatesvia Φ in (1), we will now define the remaining Π -formula L,w 1 adimensionrvectoroffirst-ordervariablesy,whichareimplicitly Ψ (x ,...,x )foragivenw∈{0,1}n.LetC betheBoolean assumedtorangeover{0,1}.First,weprovideaformulaensuring Mw 1 i w circuit succinctly encoded by a Boolean circuit D (t,y,z ,z ) w 1 2 thatthestructureofthegatesofCiscorrectlyencodediny: decidingM onaninputoflength2q(n)isuchthatC consistsof w w 2r(n) gatesforsomepolynomialr : N → N.Recallthatwecan Φ (x,y)d=ef C,gates viewanassignmentoftruthvaluestothegatesofthesuccinctly (cid:94)  yyii ==11↔↔((yyjj ==11∧∨yykk ==11)) iiffff((ii))==(((cid:107)&,,jj,,kk)) eapnpcorodperdiacteirlceunigttCh.wInasthaefboitllostwriinngg,leotrase=qu(ean1c,e..o.f,baiit)s∈triNngisb,eoaf yi =1↔yj =0 iff(i)=(∼,j,k) valuation,forany1≤j <ieachaj willbeusedtoencodetheval- i∈[r] yyii ==1xi iiffff((ii))==((↑↓,10,0,0,0)). uanesdoafitwheililnepnuctogdaetethsewviathluiensdoexft2hqe(ng)a(tejs−w1i)thuipndtoex2q2(qn()nj)−(i1−o1f)Cuwp, (4) tothegatewithindex2r(n)−1ofC .Soinparticulartheinternal w Next,theformulaΦC(x)definedbelownowenablesustodetermine gatesofCwareencodedinai. whetherCacceptsagiveninputencodedintothefirst-ordervariable Inordertoextractencodingsofbitstringsfromnaturalnum- x: bΦ¯ers,a(sxa,yfi)rswthsitcehpawsseumpreovxidtoebneeautvraallidfoernmcoudlainsgΦ.TCwhe,0s(exf,oyrm)ualnads ΦC(x)d=ef ∃x.∃y.∃y.Φbin,n(x,x)∧Φbin,r(y,y)∧ (5) enCawb,l0eustotestwhetherabitofabitstringwhoseindexisgiven ∧Φ (x,y)∧y =1 by y is encoded to be zero in x. Formally, for a valid encoding C,gates r a∈Nandforb∈[2r(n)],wehaveΦ (a,b)iffthereisaprime Φ¯C(x)d=ef ∀x.∀y.∀y.(cid:0)Φbin,n(x,x)∧Φbin,r(y,y)∧ (6) p∈[(b+1)3,(b+2)3)anda≡0mCowd,0p,ora≡0modpforall ∧Φ (x,y)(cid:1)→y =1. primesp∈[(b+1)3,(b+2)3),respectively4.Letr(cid:48)(x)=r(x)+1, C,gates r wedefine: We now show how a predicate determining whether a given number a ∈ N is a prime number in the interval [b3,(b+1)3) ΦCw,0(x,y)d=ef∃p.Φprime,r(cid:48)(n)(p,y+1)∧Φmod,r(cid:48)(n)(x,p) forsomeb>0representablebynbitscanberealised.Itiseasily verifiedthatanynumberinthisintervalcanberepresentedbyatmost Φ¯Cw,0(x,y)d=ef∀p.Φprime,r(cid:48)(n)(p,y+1)→Φmod,r(cid:48)(n)(x,p). m=3(n+1)bits.Moreoverasdiscussedabove,bothconditions canbedecidedinpolynomialtime.Thereforewecanconstructin The formulas ΦCw,1(x,y) and Φ¯Cw,1(x,y) testing whether the logarithmicspaceaBooleancircuitC withm+ninputgates bit with index y is set to 1 in the encoding x can be defined prime,n implementingthispredicate[28,Thm.8.1]anddefine analogouslybynegatingΦCw,0(x,y).Thepreviouslyconstructed formulasnowenableustodefineformulasthatallowforevaluating Φ (x,y)d=ef∃x.∃y.∃z.Φ (x,x)∧Φ (y,y)∧ the succinctly encoded Cw on an input that is provided on-the- prime,n bin,m bin,n flyviaa.Givenanindexbimplicitlylessthan2r(n) ofagateof ∧z= (cid:88) 2ixi+2m (cid:88) 2iyi∧ΦCprime,n(z) (7) Cw,representedbythefirst-ordervariabley,andavectorofvalid i∈[m] i∈[n] encodingsa=(a1,...,ai)representedbythefirst-ordervariables x,thefollowingformulaΦ (x,y)checkswhetherthevalueof Cw,(cid:62) thegatewithindexbissettotrueunderthevaluationaaccording Φ¯ (x,y)d=ef∀x.∀y.∀z.(cid:0)Φ (x,x)∧Φ (y,y)∧ prime,n bin,m bin,n ∧z= (cid:88) 2ix +2m (cid:88) 2iy (cid:1)→Φ (z). (8) i i Cprime,n 4Inordertoproperlyhandlethecaseb=0,wehavetoshifttheintervalwe i∈[m] i∈[n] usefortheencodingbyonefrom[b3,(b+1)3)to[(b+1)3,(b+2)3). totheconventiondescribedbefore: Algorithm1Deciding∃x .ϕ(x ,...,x )foragiveninstanti- i+1 1 i+1 Φ (x,y)d=ef (cid:94) (cid:16)(cid:0)2q(n)(j−1)≤y<2q(n)j → ationa1,...ai ∈Nj ofx1,...xi. Cw,(cid:62) 1≤j<i 1: ϕ(x1,...,xi+1):=DNF(ϕ(x1,...,xi+1)) →ΦCw,1(xj,y)(cid:1)∧(cid:0)2q(n)(i−1)≤y→ΦCw,1(xi,y)(cid:1)(cid:17). 23:: forfoarllaclllaluisteersaψls(tx=1,.p.(.x,1x,i.+.1.),xoif+ϕ1)d<o bofψdo 4: replacetinψwith−p(x1,...,xi+1)≥−b+1 AformulaΦCw,⊥(x,y)testingwhetherthevalueofagateissetto 5: endfor falsecanbedefinedanalogouslybynegatingΦCw,(cid:62)(x,y).Building 6: forallliteralst=¬(p(x1,...,xi+1)<b)do uponthoseformulas,wecannowconstructBooleanconnectives 7: replacetinψ(x1,...,xi+1)withp(x1,...,xi+1)≥b thatallowforcheckingthatthegatesofCwareconsistentlyencoded. 8: endfor Given a ∈ Ni as above, ΦCw,&(a,b,c1,c2) holds if the logical 9: (S :Axi+1 ≥c):=ψ[a1/x1,...,ai/xi] and-connectiveholdsforthetruthvaluesofthegateswithindex 10: if S (cid:54)=∅then b,c1andc2encodedviaa: 11: (cid:74)re(cid:75)turn true 12: endif Φ (x,y,z ,z )= Cw,& 1 2 13: endfor (cid:0) (cid:1) ΦCw,(cid:62)(x,y)↔ΦCw,(cid:62)(x,z1)∧ΦCw,(cid:62)(x,z2) . 14: return false TheremainingBooleanconnectivesfoundinDefinition1canbe reflectedviatheadditionalformulas Together with Lemma 1, this immediately gives that for any ΦCw,(cid:107)(x,y,z1,z2), ΦCw,∼(x,y,z1,z2)andΦCw,↓1(x,y,z1,z2) fixedi>0,validityinPA(i+1)isinΣEi+XP1.Wenowshowhowto whicharedefinedanalogouslytoΦ (x,y,z ,z ).Thesefor- decreasethenumberoforaclecallsbyone. mulasnowenableustodefineaΠ -Cawna,&logueto1Φ 2 (x,y)in Tothisend,letΦbeaPA(i+1,j)formulainprenexnormal 1 C,gates (4)inordertocheckiftheBooleanassignmentofthesuccinctly formforafixedi>0andsomej,i.e., encodedcircuitCwisconsistent: Φ=∃x .∀x ···Q x .ϕ(x ,...,x ). 1 2 i+1 i+1 1 i+1 ΨCw,gates(x)=∀t.∀y.∀z1.∀z2.ΦDw(t,y,z1,z2)→ InordertodecidevalidityofΦ,byapplicationofProposition7,a →(cid:94) tt==01→→ΦΦCCww,,&(cid:107)((xx,,yy,,zz11,,zz22)) ΣfoEirXtPh-ealxg1o,r.it.h.mxicasuncahlttehrantat(cid:107)iangkl(cid:107)y≤gu2escs|Φv|a(3lju)ai+ti1onfsoar1a,ll.1..≤aik∈≤Nji  tt==24→→ΦΦCCww,,(cid:62)(cid:62)((xx,).y)↔ΦCw,⊥(x,z1) wanidthsloemadeincgonzsetraonst,cw>em0,aaynadssbuymaeddthitaiotnaanlylynpuamdbdeinrginvaelvueartyioanks Here,Φ (t,y,z ,z )isaninstantiationofΦ (x)definedin(5) is represented using 2poly(|Φ|) bits. Consequently, it remains to acnledan(6a)sfDoΦrwt(hxe)ciirtcius1iotnD2lywo.pTehneiunsxe.oHfoΦwDewve(tr,,tyh,iszC1c,azn2e)aissilnyobtetofitaxleldy sbheodwectihdeadt vinalpidoilytynoomfiQalit+im1xe.i+T1h.iϕs(isa,1o/fxc1o,u.r.s.e,,anoi/txthie,xcai+se1u)ncdaenr C byconcatenatingt,y,z andz intoasinglefirst-ordervariableas standardassumptionsfromcomplexitytheory.However,thefinal 1 2 itwasdonein(7)and(8),anddetailshaveonlybeenomittedfor calltotheΣP0-oracleofaΣEiXPalgorithmgetsϕandallakasinput, thesakeofreadability.Alsonotethatthevaluesoft,y,z andz thelatterbeingofexponentialsizein|Φ|.Informallyspeaking,this 1 2 arethenimplicitlyboundedthroughΦ (t,y,z ,z ). providesuswithsufficientadditionaltimeinordertodecidevalidity Finally, we can define Ψ (x ,.D.w.,x ), th1e l2ast remaining of Mw 1 i formulafrom(1),asfollows Q x .ϕ(a /x ,...,a /x ,x ) (9) i+1 i+1 1 1 i i i+1 Ψ (x ,...,x )d=ef inpolynomialtimewithrespecttothesizeoftheinput. M(cid:26)w Ψ1Cw,gatesi(x)∧ΦCw,(cid:62)(x,2r(n)−1) ifiisodd algoArligthomritdhemci1d,inwghvicahlidtiatkyeosfϕaafnodrmthuelaaaksains(i9n)pufot,riesvaenpsie,ui.deo., ΨCw,gates(x)→ΦCw,(cid:62)(x,2r(n)−1) ifiiseven Qi+1 =∃.ThecaseQi+1 =∀canbederivedsymmetrically.Let Inspecting the construction outlined in this section, it is not dif- usdiscussAlgorithm1andanalyseitsrunningtime.InLine1,the ficult to see that for a given w ∈ {0,1}n the construction of algorithmconvertsϕintodisjunctivenormalform.Thisstepcan Φ (x ,...,x )istedious,butcanbeperformedinpolynomial beperformedinexponentialtimeDTIME(2O(|Φ|))andthustakes Lw 1 i timewithrespectton.Weleaveitasanopenproblemwhetherthis polynomialtimewithrespecttotheinput.StartinginLine2,the reductioncanactuallybeperformedinlogarithmicspace,though algorithmiteratesoverallclausesψofϕ,andsincethereareatmost theredonotseemtobeanymajorobstacles.Followingtheargumen- 2O(|Φ|) clauses this iteration is performed at most a polynomial tationofthissection,weconcludethatΦ istheformularequired number of times with respect to the size of the input. In each L,w inProposition6. iteration, in Lines 3–8 the algorithm transforms the disjuncts of ψ into linear inequalities by eliminating negation. After Line 8, 3.2 UpperBounds ψ isaconjunctionoflinearinequalitiesandthusgivesrisetoan We will now show that the previously obtained lower bounds equivalent system of linear Diophantine inequalities S in which havecorrespondingupperbounds.Letusfirstrecallanimproved thefirst-ordervariablesx1,...xiareinstantiatedbythea1,...ai. version of a result by Reddy & Loveland [32] established by Clearly,Lines3–9canbeexecutedinpolynomialtimewithrespect Weispfenning[38,Thm.2.2],whichboundsthesolutionintervals tothesizeoftheinput.Finally,inLine10feasibilityofSischecked. ofPresburgerformulas. To this end, we invoke Proposition 4 from which it follows that feasibilityofeachScanbedecidedinDTIME(2p(|Φ|)|S|)forsome Proposition7(Weispfenning[38]). Thereexistsaconstantc>0 polynomialp.Thisstepisagainpolynomialwithrespecttotheinput suchthatforanyPA(i,j)formulaΦandN ={0,...2c|Φ|(3j)i},Φ totheoraclecall.IfSisfeasiblethealgorithmreturnstrueinLine11. isvalidiffΦisvalidwhenrestrictingthefirst-ordervariablesofΦ Otherwise,ifnoSisfeasibleforalldisjunctsofϕ,thealgorithm tobeinterpretedoverelementsfromN. returnsfalseinLine14.Consequently,wehaveshownthefollowing proposition,whichtogetherwithProposition6completestheproof 4. Ultimately-PeriodicSetsDefinableinthe ofTheorem1. Σ -fragmentofPresburgerArithmetic 1 Proposition8. Foranyfixedi>0,PA(i+1)isdecidableinΣEiXP. WewillnowapplysometechniquesdevelopedinSection3inorder toproveTheorem2,i.e.,giveboundsontherepresentationofprojec- 3.3 Discussion tionsofPA(1)formulasopeninonevariableasultimately-periodic Weconcludethispartofthepaperwithashortdiscussiononthe sets.Formally,givenaPA(1)formulaΦ(x),weareinterestedinthe relationshipofourproofofthelowerboundofPA(i+1)totheproof representationoftheset ofaNEXPlowerboundforPA(2)byGra¨del[18],andapplications Φ(x) ={a∈N:Φ(a/x)isvalid}. ofandresultsderivablefromProposition8. (cid:74) (cid:75) As it emerged in Section 3.1, at many places we can apply Subsequently,weshowthatthissetisanultimatelyperiodicset andreuseideasofGra¨del’sNEXP-hardnessproofforPA(2)given whose period is at most doubly-exponential and that this bound in[18]forourlowerbound.Onemaindifferenceisthatforhishard- is tight. Throughout this section we assume binary encoding of nessproof,Gra¨delreducesfromaNEXP-completetilingproblem numbersinΦ(x) thathespecificallyintroducesinordertoshowhardnessforPA(2). WebeginwiththefirstpartofTheorem2andprovethefollowing Inourpaper,weareintheluckypositionofhavingaccesstotwenty- proposition. fiveadditionalyearsofdevelopmentsincomputationalcomplexity, Proposition9. ThereexistsafamilyofΣ -formulasofPresburger inwhichitturnedoutthatsuccinctencodingsviaBooleancircuits 1 arithmetic (Φ (x)) such that each Φ (x) is a PA(1,O(n)) provideacanonicalwayinordertoshowhardnessresultsforcom- formula withn|Φ (xn)>|0∈ O(n2) and Φn(x) is an ultimately pdliescxoitvyecrylaossfeaspthoalytninocmluidale-tEimXePa,lsgeoereit.hgm.[1fo6r,2d8e,ci2d9i]n.gMporirmeoavlietry,t[h1e] periodicsetwithpneriodpn ∈22Ω(n). (cid:74) n (cid:75) alsoenablesustouseBooleancircuitsencodedintoΣ1-respectively Tothisend,wecombineΦmod,n(x,y)from(3)inSection3.1 Πi-formulasinordertodecideprimalityofapositiveintegerofa withthefollowingstatement. boundedbitsize,whilein[18]thisisachievedbyanapplicationof theLucasprimalitycriterion,cf. Lehmer’smoregeneralproof[24]. Proposition10(Nair[27]). Letn≥9,then2n ≤lcm{1,...n}≤ Inaddition,Gra¨del’sstrongerstatementthatPA(2)isNEXP-hard 22n. alreadyforan∃∀∗-quantifierprefixcanberecoveredfromourlower Wedefine bound.Evenmoregenerallyfori>1,wecanderiveΣEXP-hardness i fromourconstructionfora(∃∀)((i−1)/2)∃∗∀∗quantifierprefixif Φn(x)d=ef∃y.Φmod,n(x,y)∧y>1. iisodd,andfora∃(∀∃)(i/2−1)∀∗∃∗quantifierprefixifiiseven. We have |Φ (x)| ∈ O(n2), and, since numbers are encoded in EventhoughessentiallyalltechnicalresultsrequiredtoproveTheo- n binary,thatΦ (x)isaPA(1,O(n))formula.Nowa∈ Φ(x) iff rem1wereavailablewhen[18]waspublished,aswehaveseenin n thereis1<m<2nsuchthata≡0modm,andconse(cid:74)quent(cid:75)ly thissectiontheproofofthelowerboundrequiressomesubstantial technicalefforts,whichisprobablyareasonwhythisresulthasnot Φ (x) = (cid:91) U(0,m,∅,{0}) n beenobtainedearlier. (cid:74) (cid:75) 1<m<2n WithregardstoapplicationsofProposition8,wegiveanexample =U(0,p,∅,{a:a∈[p],m|a,1<m<2n}), ofaresultwhichcanbeobtainedasacorollaryofthisproposition. In[21],Huynhinvestigatesthecomplexityoftheinclusionprob- where p d=ef lcm{1,...2n −1}. By Proposition 10, p ∈ 22Ω(n), lem for context-free commutative grammars. Given context-free whichyieldsthelowerboundforTheorem2. grammarsG ,G ,thisproblemistodeterminewhethertheParikh 1 2 Turning now towards the upper bound, the remainder of this image5ofthelanguagedefinedbyG isincludedintheParikhim- 1 sectionisdevotedtoprovingthesecondpartofTheorem2,i.e.,the ageofthelanguagedefinedbyG .Buildinguponacarefulanalysis 2 followingstatement. ofthesemi-linearsetsobtainedfromParikhimagesofcontext-free grammarsduetoGinsburg[14]andbyestablishingaCarathe´odory- Proposition 11. For any Σ -formula Φ(x), we have Φ(x) = 1 typetheoremforintegercones,Huynhshowsthatthecomplement U(t,p,B,R)suchthatt∈2poly(|Φ(x)|)andp∈22poly(|Φ(cid:74)(x)|). (cid:75) ofthisproblemisinNEXP.Thisresultcanhowevernoweasilybe obtainedasacorollaryofProposition8:Vermaetal.haveshown As a first step, we consider projections of sets of solutions thattheParikhimageofacontext-freegrammarcanbedefinedin of systems of linear Diophantine inequalities. To this end, let termsofaΣ -formulaofPresburgerarithmeticlinearinthesizeof S : Ax ≥ c be such a system. From Proposition 5, we have 1 (cid:83) thegrammar[37].Non-inclusionthenreducestocheckingvalidity that S = i∈IL(bi;Pi)forsomeindexsetI.LetMi bethe ofaΣ2-sentence,whichyieldsthefollowingcorollary. proje(cid:74)cti(cid:75)onofL(bi;Pi)onthefirstcomponent.WegetthatMican beobtainedas Corollary1. Non-inclusionbetweenParikhimagesofcontext-free grammarsisinNEXP. Mi ={bi+λi,1p1+···λrpi,ri :λk ∈N} =b +g ·{λ p /g +···λ p /g :λ ∈N} Of course, the “hard work” of the upper bound is done in i i 1 i,1 i r i,ri i k Proposition4,butneverthelessweareabletoobtainasuccinctproof forsomeb ,p <···<p andg =gcd{p ,...p }.Since of Huynh’s result. In general, the NEXP upper bound for PA(2) gcd{p /ig ,i.,.1.p /g }=i,ri1,itisifolklorethai,t1 i,ri providesagenericupperboundfornon-inclusionproblemsthatcan i,1 i i,ri i bereducedtocheckinginclusionbetweensemi-linearsetsdefinable Mi =bi+gi·U(t(cid:48)i+1,1,Bi(cid:48),{0}) via PA(1) formulas. For context-free commutative grammars, it forsomeB(cid:48) ⊆ [t(cid:48)]andt(cid:48) ∈ NknownastheFrobeniusnumber shouldhoweverbenotedthatitisnotknownwhetherthisupper i i i ofp /g ,...p /g .Givenco-primepositiveintegers1<a < boundistight,thebestknownlowerboundbeingΣP2 [21]. a <i,1···i< a i,∈riN,itheFrobeniusnumberf ∈ Nisthelarg1est 2 k positiveintegernotexpressibleasapositivelinearcombinationof 5TheParikhimageofawordw∈Σ∗isavectorofnaturalsofdimension a ,...a andcanbeboundedasfollows. 1 k |Σ|countingthenumberoftimeseachalphabetsymboloccursinw. Proposition12(Wilf[39]). Let1 < a1 < a2 < ··· < ak ∈ N [3] LeonardBerman. Thecomplexityoflogicaltheories. Theoretical bepairwiseco-prime.ThentheFrobeniusnumberf isboundedby ComputerScience,11(1):71–77,1980. f ≤a2k. [4] AlexisBe`s. Asurveyofarithmeticaldefinability. InAtributeto Hence, for some t ≤ b + g (p /g )2 ≤ b + p2 we MauriceBoffa,pages1–54.Socie´te´Mathe´matiquedeBelgique,2002. consequentlyhave i i i i,ri i i i,ri [5] ItshakBoroshandLeonB.Treybing. Boundsonpositiveintegral solutionsoflinearDiophantineequations.ProceedingsofttheAmerican Mi =U(ti,pi,Bi,{0}) (10) MathematicalSociety,55:299–304,1976. forsomep ≤p . [6] Yuan-YouFu-RuiCheng.Explicitestimateonprimesbetweenconsec- i i,ri utivecubes.RockyMountainJournalofMathematics,40(1):117–153, LetΦ(x)=∃x.ϕ(x,x)beaPA(1)formula.FromAlgorithm1 2010. wecanderivethat (cid:91) (cid:91) [7] KevinJ.ComptonandC.WardHenson.Auniformmethodforproving ϕ(x,x) = Sj = L(bi;Pi), lower bounds on the computational complexity of logical theories. (cid:74) (cid:75) j∈J(cid:74) (cid:75) i∈I AnnalsofPureandAppliedLogic,48(1):1–79,1990. where each S : A (x,x) ≥ c is a system of linear Diophan- [8] D.C.Cooper. Theoremprovinginarithmeticwithoutmultiplication. j j j MachineIntelligence,7:91–99,1972. tine inequalities obtained from one disjunct of the disjunctive normal form of ϕ, similar as in Line 9 of Algorithm 1. Clearly, [9] AntoineDurand-GasselinandPeterHabermehl.Ehrenfeucht-Fra¨ısse´ (cid:107)A (cid:107),(cid:107)c (cid:107)≤(cid:107)Φ(x)(cid:107)+1foralli∈I.Moreover,fromProposi- goes elementarily automatic for structures of bounded degree. In j j tion5wederivethat S = (cid:83) L(b ;P )forsomeindexset ChristophDu¨rrandThomasWilke,editors,29thInternationalSym- I suchthatforevery(cid:74)i∈j(cid:75)I i∈Ij i i posiumonTheoreticalAspectsofComputerScience,volume14of j j LeibnizInternationalProceedingsinInformatics(LIPIcs),pages242– (cid:107)b (cid:107),(cid:107)P (cid:107)≤(|Φ(x)|(cid:107)A (cid:107)+(cid:107)c (cid:107)+1)O(|Φ(x)|) ∈2poly(|Φ(x)|). 253,Dagstuhl,Germany,2012.SchlossDagstuhl–Leibniz-Zentrumfu¨r i i i i Informatik. LetMibeasabove,from(10)wehaveMi =U(ti,pi,Bi,{0}). [10] JeanneFerranteandCharlesRackoff.Adecisionprocedureforthefirst Nowdefinep d=ef lcm{p } ,combiningtheestimationsin(10) ordertheoryofrealadditionwithorder.SIAMJournalonComputing, i i∈I with Proposition 10 we have p ∈ 22poly(|Φ(x)|). It follows that 4(1):69–76,1975. [11] MichaelJ.FischerandMichaelO.Rabin.Super-exponentialcomplex- Φ(x) = U(t,p,B,R) for some t ∈ 2poly(|Φ(x)|) and p ∈ ityofPresburgerarithmetic.InBobF.CavinessandJeremyR.Johnson, 2(cid:74)2poly(|Φ(cid:75)(x)|) asabove,whichconcludestheproofofTheorem2. editors,QuantifierEliminationandCylindricalAlgebraicDecomposi- tion,TextsandMonographsinSymbolicComputation,pages122–135. SpringerVienna,1998. 5. Conclusion [12] Andra´sFrankandE´vaTardos. Anapplicationofsimultaneousdio- In the first part of this paper we have shown that Presburger phantineapproximationincombinatorialoptimization.Combinatorica, arithmetic with a fixed number of i + 1 quantifier alternations 7(1):49–65,1987. and an arbitrary number of variables in each quantifier block is [13] MartinFu¨rer.ThecomplexityofPresburgerarithmeticwithbounded completeforΣEiXP foreveryi > 0.Thisresultclosesagapthat quantifieralternationdepth.TheoreticalComputerScience,18(1):105– hasbeenleftopenintheliterature,andinparticularimprovesand 111,1982. generalisesresultsobtainedbyFu¨rer[13],Gra¨del[18]andReddy& [14] SeymourGinsburg.Themathematicaltheoryofcontextfreelanguages. Loveland[32].Moreover,itprovidesaninterestingnaturalproblem McGraw-Hill,1966. whichiscompletefortheweakEXPhierarchy,acomplexityclass [15] StefanGo¨ller,ChristophHaase,Joe¨lOuaknine,andJamesWorrell. forwhichnotthatmanynaturalcompleteproblemshavebeenknown Branching-timemodelcheckingofparametricone-counterautomata. sofar. InLarsBirkedal,editor,FoundationsofSoftwareScienceandComputa- Inthesecondpart,weestablishedboundsonultimatelyperiodic tionalStructures,volume7213ofLectureNotesinComputerScience, sets definable in the Σ -fragment of Presburger arithmetic and pages406–420.Springer,2012. 1 showedthatinparticulartheperiodofthosesetsisatmostdoubly- [16] Georg Gottlob, Nicola Leone, and Helmut Veith. Second order exponentialandthatthisboundistight.Asalreadydiscussedin logicandtheweakexponentialhierarchies. InJiˇr´ıWiedermannand theintroduction,therearehowevernaturalultimatelyperiodicsets PetrHa´jek,editors,MathematicalFoundationsofComputerScience, definableinthisfragmentthatadmitperiodsthatareatmostsingly- volume 969 of Lecture Notes in Computer Science, pages 66–81. exponential, cf. [15]. An interesting open question is whether it Springer,1995. ispossibletoidentifyafragmentofΣ -Presburgerarithmeticfor [17] ErichGra¨del.SubclassesofPresburgerarithmeticandthepolynomial- 1 whichsuchasingly-exponentialupperboundcanbeestablishedin timehierarchy.TheoreticalComputerScience,56(3):289–301,1988. generalandthatcapturessetssuchasthoseconsideredin[15]. [18] ErichGra¨del. Dominoesandthecomplexityofsubclassesoflogical theories.AnnalsofPureandAppliedLogic,43(1):1–30,1989. Acknowledgments [19] LaneA.Hemachandra. Thestrongexponentialhierarchycollapses. JournalofComputerandSystemSciences,39(3):299–322,1989. Theauthorwouldliketothanktheanonymousrefereesfortheir [20] DungT.Huynh.Decidingtheinequivalenceofcontext-freegrammars thoughtfulcommentsonthefirstversionofthispaper.Inaddition, with1-letterterminalalphabetisΣP-complete.TheoreticalComputer the author is grateful to Benedikt Bollig, Stefan Go¨ller, Felix 2 Science,33(23):305–326,1984. Klaedtke, Sylvain Schmitz and Helmut Veith for encouraging [21] DungT.Huynh.Thecomplexityofequivalenceproblemsforcommu- discussionsandhelpfulsuggestions. tativegrammars.InformationandControl,66(12):103–121,1985. [22] AlbertE.Ingham. OntheestimationofN(σ,T). TheQuarterly References JournalofMathematics,os-11(1):201–202,1940. [1] ManindraAgrawal,NeerajKayal,andNitinSaxena.PRIMESisinP. [23] FelixKlaedtke.BoundsontheautomatasizeforPresburgerarithmetic. AnnalsofMathematics,2:781–793,2002. ACMTransactionsonComputationalLogic,9(2):11:1–11:34,2008. [2] SanjeevAroraandBoazBarak.ComputationalComplexity:AModern [24] DerrickH.Lehmer. TestsforprimalitybytheconverseofFermat’s Approach. CambridgeUniversityPress,NewYork,NY,USA,1st theorem.BulletinoftheAmericanMathematicalSociety,33(3):327– edition,2009. 340,1927. [25] Leonard M. Lipshitz. The Diophantine problem for addition and A. Missingproofs divisibility. Transactions of the American Mathematical Society, In the following, let B = {0,1}. Let us recall the following 235:271–283,1978. characterisationofthepolynomial-timehierarchy. [26] LeonardM.Lipshitz.SomeremarksontheDiophantineproblemfor additionanddivisibility.InProceedingsoftheModelTheoryMeeting, Lemma2(Def.5.3andThm.5.12in[2]). Fori>0,alanguage volume33,pages41–52,1981. L⊆B∗isinΣPiffthereexistsapolynomialrandadeterministic i [27] MohanNair.OnChebyshev-typeinequalitiesforprimes.TheAmerican polynomial-time computable predicate S ⊆ (B∗)i+1 such that MathematicalMonthly,89(2):126–129,1982. w∈Liff [28] Christos H. Papadimitriou. Computational Complexity. Addison- ∃w1∈Br(n).∀w2∈Br(n)···Qiwi∈Br(n).S(w,w1,...,wi). Wesley,1994. Lemma3(Lem.1inthemaintext). Foranyi > 0,alanguage [29] ChristosH.PapadimitriouandMihalisYannakakis.Anoteonsuccinct L ⊆ {0,1}∗ is in ΣEXP iff there exists a polynomial q and a representationsofgraphs. InformationandControl,71(3):181–185, predicateR⊆({0,1}∗i)i+1suchthatforanyw∈{0,1}n, 1986. [30] Lo¨ıcPottier.MinimalsolutionsoflinearDiophantinesystems:bounds w∈Liff∃w1∈{0,1}2q(n).∀w2∈{0,1}2q(n)··· andalgorithms.InRonaldV.Book,editor,RewritingTechniquesand Applications,volume488ofLectureNotesinComputerScience,pages ···Qiwi∈{0,1}2q(n).R(w,w1,...,wi) 162–173.Springer,1991. andR(w,w ,...,w )canbedecidedindeterministicpolynomial [31] Mojz˙eszPresburger.U¨berdieVollsta¨ndigkeiteinesgewissenSystems time. 1 i derArithmetikganzerZahlen,inwelchemdieAdditionalseinzigeOp- erationhervortritt.InComptesRendusduIcongresdeMathematiciens Proof. (“⇐”)WedescribeaNEXPΣPi−1 TuringmachineM decid- desPaysSlaves,pages92–101.1929. ingforagivenw∈Bnwhetherw∈L.First,M performsaNEXP [32] C.R.ReddyandDonaldW.Loveland. Presburgerarithmeticwith guessinordertoguessw ∈ B2q(n).DefineL(cid:48) ⊆ Bn ×B2q(n) boundedquantifieralternation.InProceedingsofthe10thannualACM suchthat(w,w )∈L(cid:48)iff1 SymposiumonTheoryofComputing,pages320–325,NewYork,NY, 1 USA,1978.ACM. ∃w2∈B2q(n)···Q(cid:48)iwi∈B2q(n).¬R(w,w1,...,wi), [33] BrunoScarpellini. ComplexityofsubcasesofPresburgerarithmetic. whereQ(cid:48) = ∃ifQ = ∀andviceversa.ByLemma2,wehave Transactions of the American Mathematical Society, 284:203–218, i i 1984. that L(cid:48) is a language in ΣPi since we can check if the input is sufficiently large and immediately reject if this is not the case, [34] Uwe Scho¨ning. Complexity of Presburger arithmetic with fixed choose r : w (cid:55)→ |w| − n, and decide ¬R(w,w ,...,w ) in quantifierdimension.TheoryofComputingSystems,30(4):423–428, 1 i 1997. deterministicpolynomialtime.Thus,afterM hasguessedw1,it invokes the ΣP oracle to check (w,w ) ∈ L(cid:48) and accepts if [35] HelmutSeidl,ThomasSchwentick,AncaMuscholl,andPeterHaber- i−1 1 (w,w )(cid:54)∈L(cid:48). mehl. Countingintreesforfree. InJosepD´ıaz,JuhaniKarhuma¨ki, 1 ArtoLepisto¨,andDonaldSannella,editors,Automata,Languagesand (“⇒”)LetLbedecidedbyaNEXPΣPi−1 TuringmachineM. Programming,volume3142ofLectureNotesinComputerScience, Given w ∈ Bn, an accepting run of M has length at most 2nk pages1136–1149.Springer,2004. forsomek > 0onwhichitresolvesc ,...,c ∈ B,m ≤ 2nk [36] LarryJ.Stockmeyer. Thepolynomial-timehierarchy. Theoretical 1 m non-deterministic choices. Moreover, M makes (cid:96) oracle queries ComputerScience,3(1):1–22,1976. “v ∈L(cid:48)?”forsomeL(cid:48)inΣP suchthatn =|v |,(cid:96)≤2nk,and [37] KumarN.Verma,HelmutSeidl,andThomasSchwentick. Onthe Mjreceivesanswersa ∈Btio−t1hosequeries.jByLejmma2,wehave complexityofequationalHornclauses.InRobertNieuwenhuis,editor, j v ∈L(cid:48)iff AutomatedDeduction–CADE-20,volume3632ofLectureNotesin j ComputerScience,pages337–352.Springer,2005. ∃w2,j ∈{0,1}r(nj)···Qiwi,j ∈{0,1}r(nj).S(vj,w2,j,...,wi,j). [38] VolkerWeispfenning. ThecomplexityofalmostlinearDiophantine IfM receivesa =1asananswertoanoraclecallitcanguessthe j problems.JournalofSymbolicComputation,10(5):395–403,1990. correspondingcertificatew2,j ∈Br(nj).Otherwise,ifaj =0this [39] HerbertS.Wilf.Acircle-of-lightsalgorithmforthe”money-changing resultcanbeverifiedusingonequantifieralternation.Consequently, problem”.TheAmericanMathematicalMonthly,85(7):562–565,1978. wecanguesstheanswerstotheoraclequeriesandthenverifyat [40] PierreWolperandBernardBoigelot.Anautomata-theoreticapproach oncewhetherthoseguesseswerecorrect.Hence,w∈Liff toPresburgerarithmeticconstraints. InAlanMycroft,editor,Static Analysis,volume983ofLectureNotesinComputerScience,pages ∃c1,...cm∈B,v1,...v(cid:96)∈B2nk,a1,...a(cid:96)∈B, 21–32.Springer,1995. w2,1,...w2,(cid:96)∈Br(2nk).∀w2∈B2q(n)···Qiwi∈B2q(n). R((w·c1···cm·v1···v(cid:96)·a1···a(cid:96)·w2,1···w2,(cid:96)),w2,...,wi) for some appropriately chosen polynomial q and appropriately constructed R ⊆ (B∗)i+1 combining S with checking that the c resolvethenon-determinismofM correctlyandthattheguessed i answerstotheoraclecallsarecorrect.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.