Student Solutions Manual for use with Complex Variables and Applications Seventh Edition Selected Solutions to Exercises in Chapters 1-7 by James Ward Brown Professor of Mathematics The University of Michigan- Dearbom Ruel V. Churchill Late Professor of Mathematics The University of Michigan 1B Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto Table o/ Contents Chapter 1 ......................................................................................................... 1 Chapter 2 ....................................................................................................... 22 Chapter 3 ....................................................................................................... 3 5 Chapter 4 ....................................................................................................... 53 Chapter 5 ....................................................................................................... 7 5 Chapter 6 ....................................................................................................... 94 Chapter 7 .. . . .. .. .. .. .. .. .. .. . . . .. . . .. . .. .. . . . .. .. .. . . . . . .. .. . .. . . .. . . .. .. . .. . .. .. . .. . .. .. . . . . . . . . . . . . . . . .. .. . 118 1 "COMPLEX VARIABLES ANO APPLICATIONS" (7/e) by Brown and Churchill Chapter 1 SECTION2 l. (a) (,fi -i)-i(l-..fii) = ..fi -i-i -..fi =-2i; (b) (2,-3)(-2,1) = (-4 + 3,6 + 2) = (-1,8); ~) (10,0>(1", (e) (3,1)(3,-1)(} 1 = ~) = (2,1). 1 2. (a) Re(iz)=Re[i(x+iy)]=Re(-y+ix)=-y=-Imz; (b) Im(iz) = Im[i(x + iy)] = Im(-y + ix) = x = Rez. 2 = 3. (1 + z) (1 + z)(l + z) = (1 + z) · 1 + (1 + z)z = 1 · (1 + z) + z(l + z) 2 = l+z+z+z2 = 1+2z+z . 4. If z =Ú ± i, tllen z2 2z + 2 = (1 ± i)2 - 2(1 ± i) + 2 = ± 2i - 2 + 2i + 2 = O. - S. To prove tllat multiplication is commutati.ve, write Z1"2 = (x1,Yi)(XvY2) = (x,xz -Y¡Yz, Y1X2 +X1Y2) = (XzX¡ -yzy¡, YzX¡ + XzYt) = (Xz,Yz)(X¡,Yt) = Z2Z¡, 6. (a) To verify the associative law for addition, write (z1 +z2)+Z3 =[(Xi,Y1)+(x2,Y2)]+(x3,Y3)= (x1 +x2,Y1 + Y2)+(x3,y3) = ((X1 + Xz) + X3, (Y1 + Yz)+ Y3) =(X¡+ (x2 + X3), Y1 + (Y2 + J3)) = (X¡,y¡) + (Xz + X3, Y2 + y3) = (xpy¡) + [(X2,Y2) + (X3,y3)] =z1 +(z2 +z3). 2 (b) To verify the distributive law, write z(z1 + Z2) = (x,y)[(x1,Y1) + (x2,Y2)l = (x,y)(x1 + X2,Yi + Y2) = (XX1 + XX2 - YY1 - YY2, YX1 + YX2 + XY1 + .xy2) = (xx1 -yy¡ +xx2 -yy2, YX1 +xy1 + YX2 +xy2) = (xx¡ - YYi, YX1 + .xy1) + (xx2 -yy2, YX2 +xy2) = (x,y)(x¡,Ji) + (x,y)(X2,Y2) = ZZ¡ + ZZ2- 2 10. Toe problem here is to solve the equation z + z + 1 = O for z = (x,y) by writing (x,y)(x,y) + (x,y) + (1,0) = (0,0). Since 2 (x - y2 +X+ 1, 2.xy +y)= (0,0), it follows that x2 -y2 + x + 1 = O and 2xy + y = O. By writing the second of these equations as (2x + l)y = O, we see that either 2x + 1 = O or 2 y= O. If y= O, the first equation becomes x + x + 1 = O, which has no real roots (according to the quadratic formula). Hence 2x + 1 = O, or x = -1/2. In that case, the first equation reveals that y2 = 3/4, or y= ±,['j/2. Thus z =(x,y)=(-~. ± ~)- SECTION3 l. (a) 1 + 2i + 2 - i = (1 + 2i)(3 + 4i) + (2 - i)(-5i) = -5 + IOi + -5 - IOi = _ 2. 3-4i Si (3-4i)(3 + 4i) (5i)(-5i) 25 25 5' Si Si Si 1 (b) (1-i)(2-i)(3-i) = (1-3i)(3-i) = --1-0i = - 2; (e) (I-i)4 =[(1-i)(l-i)]2 =(-2i)2 =-4. 2. (a) (-I)z=-z since z+(-l)z=z[l+(-l)]=z·O=O; 1 1 z z (b) -=-·-=-=z (z;tO). 1 l / z z- z 1 3 6. =(~J(~)=(~Jz(.!.)=(~)(zz- )=(~)·1 =~ 7. 1 Z1Z Z2Z Z2 Z Zz Z Z2 Z2 Z2 SECTION 4 2 . 1. (a) z = 2i, Z =--¡ 1 2 3 y X y o X 4 (e) Z = (-3,1), z = (1,4) 1 2 X (d ) Z¡ = X¡ + iy¡, Z2 = X¡ - iy¡ y X 2. Inequalities (3), Sec. 4, are Rez S IRezl S lzl and Imz S llmzl S lzl. These are obvious if we write them as 3. In order to verify the inequality "V21zl ~ IRezl + llmzl, we rewrite it in the following ways: "'12~x2 + y2 ~ lxl + lyl, 2(x2 + y2) ~ lxl2 + 21xllyl + lyl2, lxl2-21xllyl + lyl2 ~ O, (lxl-lyl)2 ~ O. This last form of the inequality to be verified is obviously true since the left-hand side is a perfect square. 5 4. (a) Rewrite lz -1 + il= 1 as ~ -(1-i)I = l. This is the circle centered at 1-i with radius l. It is shown below. o 5. (a) Write lz-4il+lz+ 4il= 10 as lz-4il+lz-(-4i)I= 10 to see that this is the locus of all points z such that the sum of the distances from z to 4i and -4i is a constant. Such a curve is an ellipse with foci ±4i. (b) Write lz-ll=lz + il as lz - ll=lz -(-i)I to see that this is the locus of all points z such that the distance from z to 1 is always the same as the distan ce to -i. Toe curve is, tlten, the perpendicular bisector of the line segment from 1 to -i. SECTION5 1. (a) z+3i=z+3i=z-3i; = = (b) iz iz -iz; (e) (2+i)2 =(2+i)2 =(2-i)2 =4-4i+i2 =4-4i-1=3-4i; (d) 1(2.z + 5)( "'2 - i)l=l2Z + 511"'2 - il=l2z + 5 h/2 + 1 = "1312z + 51. 2. (a) Rewrite Re{z - i) = 2 as Re[x + i(-y -1)] = 2, or x = 2. This is the vertical line through the point z = 2, shown below. y o 2 X 6 i lz- ~ ~ (b) Rewrite 12z-il= 4 as 21z- 1= 4, or 1= 2. This is the circle centered at with radius 2, shown below. 3. w rite Z¡ = X¡ + iy¡ and Z2 = X2 + iy2. Then Z¡ -z2 = (x1 + iy1)-(x2 + iy2) = (x1 - X2) + i(y¡ - y2) =(X¡ -x2)-i(y¡-y2)=(x¡-iy¡)-(X2-iY2)=z1 -z2 and z1z2 = (x1 + iy¡)(x2 + iy2) = (X1X2 - y¡y2) + i(y1x2 + X1y2) = (X¡X2 - YiY2) - i(Y1X2 + X¡Ji) = (X¡ - iy¡ )(X2 - ÍY2) = Z1Z2. (zz)(zz) zzzz (b) z4 = z2z2 = z2 z2 = zzzz = = = Z4 • 6. (a) ~ =~= lz 1 (b) 1 zz liiz 1 lz 11z 1 2 3 3 2 3 8. In this problem, we shall use the inequalities (see Sec. 4) Specifically, when lzl:S; l, z z 1Re(2 + + z3)1 :S; 12 + + z31 :S; 2+1.zl +lz31 = 2+1zl+lzl3 :S; 2 + 1 + 1 = 4. 7 10. First write z4 - 4z2 + 3 = (z2 l)(z2 3). Then observe that when lzl= 2, - - and Thus, when lzl = 2, lz4 -4z2 + 31=1z2 -ll·lz2 -31 ~ 3· 1 = 3. Consequently, when z líes on the circle lzl= 2, I= <.!. 1 1 1z4 -4z2 +3 lz4 -4z2 +31- 3· z 11. (a) Prove that z is real ~ = z. z ( <=) Suppose that = z, so that x - iy = x + iy. This means that i2 y = O, or y = O. Thus z = x + iO = x, or z is real. z (=>) Suppose that z is real, so that z = x + iO. Toen = x -iO = x + iO = z. (b) Prove that z is either real or pure imaginary ~ z2 = z2. (<=) Suppose that z2 =z2. Toen (x-iy)2 =(x+iy)2, or i4xy=O. But this can be only if either x = O or y = O, or possibly x = y = O. Thus z is either real or pure imaginary. ( =>) Suppose that z is either real or pure imaginary. If z is real, so that z = x, then z2 = x2 = z2. If Z is pure imaginary, so that Z = iy, then z2 = ( -iy) 2 = (iy )2 = z2• 12. (a) We shall use mathematical induction to show that (n = 2,3, ... ). This is known when n = 2 (Sec. 5). Assuming now that it is true when n = m, we may write Z1 + Z2 +···+ Zm + Zm+l = (Z1 + Z2 +···+ Zm) + Zm+l = (Z1 +z2 +···+zm)+zm+l = Z1 + z'2+···+zm) + Zm+1 = z'1 + Z2+··-+zm + Zm+1· 8 (b) In the same way, we can show that (n = 2,3, ... ). This is true when n = 2 (Sec. 5). Assuming that it is true when n = m, we write Z¡Zz ···ZmZm+l = (Z1Z2 ···zm)Zm+l = (Z1Z2 ···zm) Zm+l = = (z'iz2 ·•· zm)zm+i Z1Zz ·•· ZmZm+i · zz z 14. Toe identities (Sec. 5) =lzl2 and Rez = z + enable us to write lz-z 1= Ras 2 0 (z-z )(z-z = R2 0 0) , ZZ - (Z Zo + ZZo) + ZoZo = R2 , zz 1z l2 - 2 Re( + 1z / = R2 0) • ;i 15. Since x = z; z and y = z z, the hyperbola x2 -y2 = 1 can be written in the following ways: 2 2 2z + 2z = 1, 4 z2 +z2 = 2. SECTION7 1. (a) Since arg( i .)=argi-arg(-2-2i), -2-2z 3 one value of arg( i .) is 1C -(- ,c), or Stc. Consequently, the principal value is -2-2z 2 4 4 51C 31C --2,c or -- 4 ' 4·
Description: