ebook img

Structure preserving energy functions in power systems : theory and applications PDF

369 Pages·2013·30.736 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structure preserving energy functions in power systems : theory and applications

ElEctrical EnginEEring A guide for software development of the dynamic security assess- Structure Preserving Energy ment and control of power systems, Structure Preserving Energy Functions in Power Systems: Theory and Applications takes Functions in Power Systems an approach that is more general than previous works on Transient Energy Functions defined using Reduced Network Models. A compre- hensive presentation of theory and applications, this book: T h e o r y a n d a p p l i c aT i o n s • Describes the analytics of monitoring and predicting dynamic security and emergency control through the illustration of theory and applications of energy functions defined on structure pre- serving models • Covers different facets of dynamic analysis of large bulk power systems such as system stability evaluation, dynamic security assessment, and control, among others • Supports illustration of SPEFs using examples and case studies, including descriptions of applications in real-time monitoring, adaptive protection, and emergency control • Presents a novel network analogy based on accurate genera- tor models that enables an accurate, yet simplified approach to computing total energy as the aggregate of energy in individual components The book presents analytical tools for online detection of loss of synchronism and suggests adaptive system protection. It covers the design of effective linear damping controllers using FACTS, for damping small oscillations during normal operation to prevent tran- sition to emergency states, and emergency control based on FACTS, to improve first swing stability and also provide rapid damping of nonlinear oscillations that threaten system security during major disturbances. The author includes detection and control algorithms derived from theoretical considerations and illustrated through several examples and case studies on text systems. K13715 ISBN: 978-1-4398-7936-8 90000 K. R. Padiyar 9 781439 879368 © 2008 Taylor & Francis Group, LLC K13715_Cover_mech.indd All Pages 1/30/13 9:26 AM Structure Preserving Energy Functions in Power Systems Theory and a pplicaTions © 2008 Taylor & Francis Group, LLC Structure Preserving Energy Functions in Power Systems T h e o r y a n d a p p l i c aT i o n s K. R. Padiyar Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2008 Taylor & Francis Group, LLC MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130312 International Standard Book Number-13: 978-1-4398-7938-2 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ- ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ...................................................................................................................xiii Acknowledgments .............................................................................................xvii Author ...................................................................................................................xix Abbreviations and Acronyms ...........................................................................xxi 1. Introduction .....................................................................................................1 1.1 General....................................................................................................1 1.2 Power System Stability .........................................................................2 1.3 Power System Security .........................................................................3 1.4 Monitoring and Enhancing System Security ....................................6 1.5 Emergency Control and System Protection ......................................7 1.6 Application of Energy Functions ........................................................8 1.7 Scope of This Book ..............................................................................14 2. Review of Direct Methods for Transient Stability Evaluations for Systems with Simplified Models ........................................................17 2.1 Introduction .........................................................................................17 2.2 System Model .......................................................................................18 2.2.1 Synchronous Generators .......................................................18 2.2.2 Network Equations ................................................................21 2.2.3 Load Model .............................................................................22 2.2.4 Expressions for Electrical Power .........................................23 2.3 Mathematical Preliminaries ..............................................................25 2.3.1 Equilibrium Points .................................................................26 2.3.2 Stability of Equilibrium Point ..............................................27 2.3.3 Lyapunov Stability .................................................................27 2.3.4 Theorem on Lyapunov Stability .........................................27 2.4 Two-Machine System and Equal Area Criterion ............................30 2.4.1 Equal Area Criterion .............................................................31 2.4.2 Energy Function Analysis of an SMIB System ..................32 2.5 Lyapunov Functions for Direct Stability Evaluation .....................34 2.5.1 Construction of Lyapunov Function ...................................38 2.6 Energy Functions for Multimachine Power Systems ....................39 2.6.1 Characterization of Transient Stability ...............................39 2.6.2 Center of Inertia Formulations ............................................40 2.6.3 Energy Function Using COI Formulation ..........................43 2.7 Estimation of Stability Domain .........................................................44 2.7.1 Incorporating Transfer Conductances in Energy Function ................................................................44 © 2008 Taylor & Francis Group, LLC v vi Contents 2.7.2 Determination of Critical Energy ........................................46 2.7.2.1 Single-Machine System .........................................46 2.7.2.2 Multimachine System ............................................48 2.7.3 Potential Energy Boundary Surface ....................................48 2.7.4 Controlling UEP Method ......................................................50 2.7.5 BCU Method ...........................................................................51 2.8 Extended Equal Area Criterion .........................................................53 2.8.1 Formulation ............................................................................53 2.8.2 Approximation of Faulted Trajectory..................................54 2.8.3 Identification of Critical Cluster ..........................................55 3. Structure Preserving Energy Functions for Systems with Nonlinear Load Models and Generator Flux Decay ..............................57 3.1 Introduction .........................................................................................57 3.2 Structure Preserving Model ..............................................................57 3.3 Inclusion of Voltage-Dependent Power Loads ................................61 3.4 SPEF with Voltage-Dependent Load Models ..................................62 3.4.1 Dynamic Equations of Generator ........................................62 3.4.2 Load Model .............................................................................63 3.4.3 Power Flow Equations ...........................................................64 3.4.4 Structure Preserving Energy Functions .............................64 3.4.5 Computation of Stability Region .........................................68 3.5 Case Studies on IEEE Test Systems ..................................................69 3.5.1 Seventeen-Generator System ................................................70 3.5.2 Fifty-Generator System .........................................................74 3.6 Solution of System Equations during a Transient ..........................76 3.7 Noniterative Solution of Networks with Nonlinear Loads..................................................................................77 3.7.1 System Equations ...................................................................78 3.7.2 Dynamic Equations of Generators ......................................78 3.7.3 Power Flow Equations during a Transient .........................79 3.7.4 Special Cases ..........................................................................81 3.7.5 Solutions of the Quartic Equation .......................................82 3.7.6 Network Transformation for Decoupling of Load Buses ...............................................................................83 3.7.7 Transformation of the Load Characteristics ......................84 3.8 Inclusion of Transmission Losses in Energy Function ..................85 3.8.1 Transformation of a Lossy Network ...................................85 3.8.2 Structure Preserving Energy Function Incorporating Transmission Line Resistances ............................................87 3.9 SPEF for Systems with Generator Flux Decay ................................90 3.9.1 System Model .........................................................................90 3.9.1.1 Generator Model .....................................................91 3.9.1.2 Load Model .............................................................92 3.9.1.3 Power Flow Equations ...........................................92 © 2008 Taylor & Francis Group, LLC Contents vii 3.9.2 Structure Preserving Energy Function ...............................93 3.9.3 Example ...................................................................................96 3.10 Network Analogy for System Stability Analysis ...........................97 4. Structure Preserving Energy Functions for Systems with Detailed Generator and Load Models ..........................................105 4.1 Introduction .......................................................................................105 4.2 System Model .....................................................................................106 4.2.1 Generator Model ..................................................................106 4.2.2 Excitation System Model .....................................................107 4.2.3 Load Model ...........................................................................108 4.2.4 Power Flow Equations .........................................................108 4.3 Structure Preserving Energy Function with Detailed Generator Models .............................................................109 4.3.1 Structure Preserving Energy Function .............................109 4.3.2 Simpler Expression for SPEF ..............................................112 4.4 Numerical Examples ........................................................................114 4.4.1 SMIB System .........................................................................114 4.4.2 Ten-Generator, 39-Bus New England Test System ..........115 4.4.3 Variation of Total Energy and Its Components ...............121 4.5 Modeling of Dynamic Loads ...........................................................122 4.5.1 Induction Motor Model .......................................................124 4.5.2 Voltage Instability in Induction Motors............................126 4.5.3 Simpler Models of Induction Motors ................................128 4.5.4 Energy Function Analysis of Synchronous and Voltage Stability ............................................................128 4.5.4.1 Computation of Equilibrium Points ..................130 4.5.4.2 Computation of Energy at UEP ..........................132 4.5.5 Dynamic Load Models in Multimachine Power Systems ..................................................................................135 4.6 New Results on SPEF Based on Network Analogy .....................136 4.6.1 Potential Energy Contributed by Considering the Two-Axis Model of the Synchronous Generator .............140 4.7 Unstable Modes and Parametric Resonance .................................144 4.7.1 Normal Forms ......................................................................145 4.7.2 Fast Fourier Transform of Potential Energy .....................146 4.7.2.1 Results of the Case Study ....................................146 5. Structure Preserving Energy Functions for Systems with HVDC and FACTS Controllers ......................................................149 5.1 Introduction .......................................................................................149 5.2 HVDC Power Transmission Links .................................................149 5.2.1 HVDC Systems and Energy Functions ............................149 5.2.2 HVDC System Model ..........................................................150 5.2.2.1 Converter Model ...................................................150 © 2008 Taylor & Francis Group, LLC viii Contents 5.2.2.2 DC Network Equations .......................................152 5.2.2.3 Converter Control Model ....................................152 5.2.3 AC System Model .................................................................155 5.2.3.1 Generator Model ...................................................155 5.2.3.2 Load Model ...........................................................156 5.2.3.3 AC Network Equations........................................156 5.2.4 Structure Preserving Energy Function .............................156 5.2.5 Example .................................................................................160 5.2.5.1 Auxiliary Controller ............................................161 5.2.5.2 Emergency Controller ..........................................162 5.2.5.3 Case Study and Results .......................................162 5.3 Static Var Compensator ....................................................................163 5.3.1 Description ............................................................................163 5.3.2 Control Characteristics and Modeling of SVC Controller ..............................................................................164 5.3.3 Network Solution with SVC: Application of Compensation Theorem......................................................166 5.3.3.1 Calculation of ϕ in Control Region ...............167 SVC 5.3.3.2 Network Solution .................................................168 5.3.4 Potential Energy Function for SVC ...................................169 5.3.5 Example .................................................................................171 5.3.6 Case Study of New England Test System .........................172 5.3.6.1 Network Calculation with Multiple SVCs ........173 5.3.6.2 Structure Preserving Energy Function .............174 5.3.6.3 Results and Discussion ........................................175 5.4 Static Synchronous Compensator ...................................................175 5.4.1 General ..................................................................................175 5.4.2 Modeling of a STATCOM ...................................................176 5.4.3 STATCOM Controller ..........................................................178 5.4.4 Potential Energy Function for a STATCOM .....................180 5.5 Series-Connected FACTS Controllers ............................................181 5.5.1 Thyristor-Controlled Series Capacitor ..............................182 5.5.1.1 Power Scheduling Control ..................................182 5.5.1.2 Power Swing Damping Control .........................183 5.5.1.3 Transient Stability Control ..................................183 5.5.2 Static Synchronous Series Compensator ..........................184 5.6 Potential Energy in a Line with Series FACTS Controllers.............................................................................185 5.6.1 Thyristor-Controlled Series Capacitor ..............................186 5.6.2 Static Synchronous Series Compensator ..........................187 5.6.3 Potential Energy in the Presence of CC and CA Controllers ............................................................................188 5.6.3.1 Potential Energy with CC Control .....................188 5.6.3.2 Potential Energy with CA Control .....................189 5.7 Unified Power Flow Controller .......................................................189 © 2008 Taylor & Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.