ebook img

Structure and dynamics of two-dimensional colloidal hard spheres Alice L. Thorneywork PDF

145 Pages·2015·9.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structure and dynamics of two-dimensional colloidal hard spheres Alice L. Thorneywork

Structure and dynamics of two-dimensional colloidal hard spheres Alice L. Thorneywork Christ Church University of Oxford Supervisor: Dr Roel P. A. Dullens A thesis submitted for the degree of Doctor of Philosophy Hilary Term 2015 Abstract The structural and dynamic behaviour of quasi-two-dimensional monodisperse and bidisperse colloidal hard spheres are studied by optical microscopy. Firstly, a full characterisation of the equilibrium structure is presented through a consideration of structural correlation functions and number fluctuations. Comparison to fundamental measure theory and Monte Carlo simu- lations confirms both the behaviour of the system as a model for hard disks and the equation of state. The differing structural behaviour of binary systems at different size ratios is also dis- cussed in relation to the nonadditivity. Next, the short- and long-time self-diffusion of particles is considered. Results for the long-time diffusion coefficient are again compared to Monte Carlo simulations, which demonstrates that at long times the dynamic behaviour is effectively not affected by hydrodynamic interactions. Additionally, simple theoretical expressions for the area fraction dependence of the short- and long-time diffusion coefficients are discussed. The self- dynamicpropertiesofparticlesareprobedfurtherusingtheself-intermediatescatteringfunction and the self-van Hove correlation function. In particular, the extent to which these quantities may be described by the Gaussian approximation is considered in relation to the relevant hydro- dynamic limits for colloidal systems. A scaling relation to describe the crossover between these limits at short and long times is also developed. The consideration of dynamic behaviour is then extended to collective phenomena and, in particular, to the process of interdiffusion. Here, the thermodynamic and kinetic drives for this process are explored for binary systems at two differ- ent size ratios. The differing interdiffusive effects seen in the two systems are considered in light of the predictions of the Darken equation. Finally, the melting of quasi-two-dimensional col- loidal hard spheres is studied by considering a monolayer of particles in sedimentation-diffusion equilibrium. Density profiles and the equation of state are used to characterise the system. These quantities display a discontinuity, indicating a coexistence gap and hence an interface. This interface is located and analysed using capillary wave theory, from which both the size of the coexistence gap and the anisotropic stiffness of the interface are determined. i ii Declaration This thesis is submitted for the degree of Doctor of Philosophy in Physical and Theoretical Chemistry at the University of Oxford. No part of this thesis has been accepted or is currently being submitted for any degree, diploma, certificate or other qualification in this University or elsewhere. This thesis is wholly my own work, except where indicated. iii iv Contents Abstract i Declaration iii 1 Introduction 1 1.1 Colloidal model systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Hard core systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Theoretical background and experimental methods 7 2.1 Statistical mechanics of colloidal liquids . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Number fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 The radial distribution function . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 The equation of state from the radial distribution function . . . . . . . . 13 2.1.4 The static structure factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.5 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Colloidal model systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Colloidal model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Video-microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 v vi CONTENTS 3 Structure and fluctuations of quasi-two-dimensional binary colloidal fluids 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Experimental methods and data analysis . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 Colloidal model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 Structural correlation functions . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 The limit S(k → 0) and number fluctuations . . . . . . . . . . . . . . . . 31 3.2.4 Structure factors in binary systems . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Structure in monodisperse systems . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Links to the equation of state . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.3 Structure in binary systems . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.4 Structure in binary monolayers at small size ratio. . . . . . . . . . . . . . 39 3.3.5 Structure in binary monolayers at large size ratio . . . . . . . . . . . . . . 43 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Self-diffusion in quasi-two-dimensional binary colloidal fluids 47 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Experimental techniques and data analysis . . . . . . . . . . . . . . . . . . . . . 49 4.2.1 Colloidal model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2 The mean squared displacement and diffusion coefficients . . . . . . . . . 50 4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 Monodisperse system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.2 Binary system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 The Gaussian approximation in quasi-two-dimensional colloidal fluids 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CONTENTS vii 5.3 Experimental methods and data analysis . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.1 Colloidal model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.2 Dynamic correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . 65 5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6 Interdiffusion in quasi-two-dimensional binary colloidal fluids 75 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.2.1 The interdiffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3 Experimental methods and data analysis . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.1 Colloidal model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.2 Centre of mass coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.3 The concentration-concentration structure factor. . . . . . . . . . . . . . . 81 6.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 Melting of quasi-two-dimensional colloidal hard spheres 93 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.2.1 The KTHNY scenario for two-dimensional melting . . . . . . . . . . . . . 95 7.2.2 Sedimentation-diffusion equilibrium . . . . . . . . . . . . . . . . . . . . . 98 7.2.3 Capillary wave theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.3 Experimental methods and data analysis . . . . . . . . . . . . . . . . . . . . . . . 100 7.3.1 Colloidal model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.3.2 Density profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.3.3 Interface localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.3.4 Height-height correlation function . . . . . . . . . . . . . . . . . . . . . . 104 viii CONTENTS 7.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 List of publications 133 Acknowledgements 135

Description:
colloidal hard spheres. Alice L. Thorneywork. Christ Church. University of Oxford. Supervisor: Dr Roel P. A. Dullens. A thesis submitted for the degree
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.