ebook img

Structural Health Monitoring: A Machine Learning Perspective PDF

643 Pages·2012·9.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structural Health Monitoring: A Machine Learning Perspective

STRUCTURAL HEALTH MONITORING STRUCTURAL HEALTH MONITORING A MACHINE LEARNING PERSPECTIVE CharlesR.Farrar LosAlamosNationalLaboratory,USA KeithWorden UniversityofSheffield,UK A John Wiley & Sons, Ltd., Publication Thiseditionfirstpublished2013 (cid:2)C 2013JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUK Copyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook.This publicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmattercovered.Itis soldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladvice orotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Farrar,C.R.(CharlesR.) Structuralhealthmonitoring:amachinelearningperspective/CharlesR.Farrar,KeithWorden. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-119-99433-6(cloth) 1.Structuralhealthmonitoring. I.Worden,K. II.Title. TA656.6.F372012 624.1(cid:3)71–dc23 2012018036 AcataloguerecordforthisbookisavailablefromtheBritishLibraryandtheLibraryofCongress. ISBN:978-1-119-99433-6 Typesetin9/11ptTimesbyAptaraInc.,NewDelhi,India CRF:ToLorraine,Ican’timaginereceivingmoresupport andencouragement! KW:ToAnnaandGeorgewithlove. Contents Preface xvii Acknowledgements xix 1 Introduction 1 1.1 HowEngineersandScientistsStudyDamage 2 1.2 MotivationforDevelopingSHMTechnology 3 1.3 DefinitionofDamage 4 1.4 AStatisticalPatternRecognitionParadigmforSHM 7 1.4.1 OperationalEvaluation 10 1.4.2 DataAcquisition 10 1.4.3 DataNormalisation 10 1.4.4 DataCleansing 11 1.4.5 DataCompression 11 1.4.6 DataFusion 11 1.4.7 FeatureExtraction 12 1.4.8 StatisticalModellingforFeatureDiscrimination 12 1.5 LocalversusGlobalDamageDetection 13 1.6 FundamentalAxiomsofStructuralHealthMonitoring 14 1.7 TheApproachTakeninThisBook 15 References 15 2 HistoricalOverview 17 2.1 RotatingMachineryApplications 17 2.1.1 OperationalEvaluationforRotatingMachinery 18 2.1.2 DataAcquisitionforRotatingMachinery 18 2.1.3 FeatureExtractionforRotatingMachinery 19 2.1.4 StatisticalModellingforDamageDetectioninRotatingMachinery 20 2.1.5 ConcludingCommentsaboutConditionMonitoringof RotatingMachinery 21 2.2 OffshoreOilPlatforms 21 2.2.1 OperationalEvaluationforOffshorePlatforms 21 2.2.2 DataAcquisitionforOffshorePlatforms 24 2.2.3 FeatureExtractionforOffshorePlatforms 24 2.2.4 StatisticalModellingforOffshorePlatforms 25 2.2.5 LessonsLearnedfromOffshoreOilPlatformStructuralHealthMonitoring Studies 25 viii Contents 2.3 AerospaceStructures 25 2.3.1 OperationalEvaluationforAerospaceStructures 28 2.3.2 DataAcquisitionforAerospaceStructures 29 2.3.3 FeatureExtractionandStatisticalModellingforAerospaceStructures 31 2.3.4 StatisticalModelsUsedforAerospaceSHMApplications 32 2.3.5 ConcludingCommentsaboutAerospaceSHMApplications 32 2.4 CivilEngineeringInfrastructure 32 2.4.1 OperationalEvaluationforBridgeStructures 34 2.4.2 DataAcquisitionforBridgeStructures 34 2.4.3 FeaturesBasedonModalProperties 35 2.4.4 StatisticalClassificationofFeaturesforCivilEngineeringInfrastructure 36 2.4.5 ApplicationstoBridgeStructures 36 2.5 Summary 37 References 38 3 OperationalEvaluation 45 3.1 EconomicandLife-SafetyJustificationsforStructuralHealthMonitoring 45 3.2 DefiningtheDamagetoBeDetected 46 3.3 TheOperationalandEnvironmentalConditions 47 3.4 DataAcquisitionLimitations 47 3.5 OperationalEvaluationExample:BridgeMonitoring 48 3.6 OperationalEvaluationExample:WindTurbines 51 3.7 ConcludingCommentonOperationalEvaluation 52 References 52 4 SensingandDataAcquisition 53 4.1 Introduction 53 4.2 SensingandDataAcquisitionStrategiesforSHM 53 4.2.1 StrategyI 54 4.2.2 StrategyII 54 4.3 ConceptualChallengesforSensingandDataAcquisitionSystems 55 4.4 WhatTypesofDataShouldBeAcquired? 56 4.4.1 DynamicInputandResponseQuantities 57 4.4.2 OtherDamage-SensitivePhysicalQuantities 59 4.4.3 EnvironmentalQuantities 59 4.4.4 OperationalQuantities 60 4.5 CurrentSHMSensingSystems 60 4.5.1 WiredSystems 60 4.5.2 WirelessSystems 61 4.6 SensorNetworkParadigms 63 4.6.1 SensorArraysDirectlyConnectedtoCentralProcessingHardware 64 4.6.2 DecentralisedProcessingwithHoppingConnection 65 4.6.3 DecentralisedProcessingwithHybridConnection 66 4.7 FutureSensingNetworkParadigms 67 4.8 DefiningtheSensorSystemProperties 68 4.8.1 RequiredSensitivityandRange 70 4.8.2 RequiredBandwidthandFrequencyResolution 71 4.8.3 SensorNumberandLocations 71 4.8.4 SensorCalibration,StabilityandReliability 72 4.9 DefinetheDataSamplingParameters 73 Contents ix 4.10 DefinetheDataAcquisitionSystem 74 4.11 ActiveversusPassiveSensing 75 4.12 MultiscaleSensing 75 4.13 PoweringtheSensingSystem 77 4.14 SignalConditioning 77 4.15 SensorandActuatorOptimisation 78 4.16 SensorFusion 79 4.17 SummaryofSensingandDataAcquisitionIssuesforStructuralHealthMonitoring 82 References 83 5 CaseStudies 87 5.1 TheI-40Bridge 87 5.1.1 PreliminaryTestingandDataAcquisition 89 5.1.2 UndamagedAmbientVibrationTests 90 5.1.3 ForcedVibrationTests 91 5.2 TheConcreteColumn 92 5.2.1 Quasi-StaticLoading 95 5.2.2 DynamicExcitation 95 5.2.3 DataAcquisition 95 5.3 The8-DOFSystem 98 5.3.1 PhysicalParameters 100 5.3.2 DataAcquisition 100 5.4 SimulatedBuildingStructure 100 5.4.1 ExperimentalProcedureandDataAcquisition 101 5.4.2 MeasuredData 102 5.5 TheAlamosaCanyonBridge 104 5.5.1 ExperimentalProceduresandDataAcquisition 104 5.5.2 EnvironmentalMeasurements 107 5.5.3 VibrationTestsPerformedtoStudyVariabilityofModalProperties 108 5.6 TheGnatAircraft 108 5.6.1 SimulatingDamagewithaModifiedInspectionPanel 109 5.6.2 SimulatingDamagebyPanelRemoval 112 References 116 6 IntroductiontoProbabilityandStatistics 119 6.1 Introduction 119 6.2 Probability:BasicDefinitions 120 6.3 RandomVariablesandDistributions 122 6.4 ExpectedValues 125 6.5 TheGaussianDistribution(andOthers) 130 6.6 MultivariateStatistics 132 6.7 TheMultivariateGaussianDistribution 133 6.8 ConditionalProbabilityandtheBayesTheorem 134 6.9 ConfidenceLimitsandCumulativeDistributionFunctions 137 6.10 OutlierAnalysis 140 6.10.1 OutliersinUnivariateData 140 6.10.2 OutliersinMultivariateData 141 6.10.3 CalculationofCriticalValuesofDiscordancyorThresholds 141 6.11 DensityEstimation 142 x Contents 6.12 ExtremeValueStatistics 148 6.12.1 Introduction 148 6.12.2 BasicTheory 148 6.12.3 DeterminationofLimitDistributions 151 6.13 DimensionReduction–PrincipalComponentAnalysis 155 6.13.1 SimpleProjection 156 6.13.2 PrincipalComponentAnalysis(PCA) 156 6.14 Conclusions 158 References 159 7 Damage-SensitiveFeatures 161 7.1 CommonWaveformsandSpectralFunctionsUsedintheFeatureExtractionProcess 163 7.1.1 WaveformComparisons 164 7.1.2 AutocorrelationandCross-CorrelationFunctions 165 7.1.3 ThePowerSpectralandCross-SpectralDensityFunctions 166 7.1.4 TheImpulseResponseFunctionandtheFrequencyResponseFunction 168 7.1.5 TheCoherenceFunction 169 7.1.6 SomeRemarksRegardingWaveformsandSpectra 170 7.2 BasicSignalStatistics 171 7.3 TransientSignals:TemporalMoments 178 7.4 TransientSignals:DecayMeasures 181 7.5 AcousticEmissionFeatures 183 7.6 FeaturesUsedwithGuided-WaveApproachestoSHM 185 7.6.1 Preprocessing 186 7.6.2 BaselineComparisons 186 7.6.3 DamageLocalisation 188 7.7 FeaturesUsedwithImpedanceMeasurements 188 7.8 BasicModalProperties 191 7.8.1 ResonanceFrequencies 192 7.8.2 InverseversusForwardModellingApproachestoFeatureExtraction 194 7.8.3 ResonanceFrequencies:TheForwardApproach 195 7.8.4 ResonanceFrequencies:SensitivityIssues 195 7.8.5 ModeShapes 197 7.8.6 Load-DependentRitzVectors 203 7.9 FeaturesDerivedfromBasicModalProperties 206 7.9.1 ModeShapeCurvature 207 7.9.2 ModalStrainEnergy 210 7.9.3 ModalFlexibility 215 7.10 ModelUpdatingApproaches 218 7.10.1 ObjectiveFunctionsandConstraints 220 7.10.2 DirectSolutionfortheModalForceError 221 7.10.3 OptimalMatrixUpdateMethods 222 7.10.4 Sensitivity-BasedUpdateMethods 226 7.10.5 EigenstructureAssignmentMethod 230 7.10.6 HybridMatrixUpdateMethods 231 7.10.7 ConcludingCommentonModelUpdatingApproaches 231 7.11 TimeSeriesModels 232 7.12 FeatureSelection 234 7.12.1 SensitivityAnalysis 234 7.12.2 InformationContent 238 Contents xi 7.12.3 AssessmentofRobustness 239 7.12.4 OptimisationProcedures 239 7.13 Metrics 239 7.14 ConcludingComments 240 References 240 8 FeaturesBasedonDeviationsfromLinearResponse 245 8.1 TypesofDamagethatCanProduceaNonlinearSystemResponse 245 8.2 MotivationforExploringNonlinearSystemIdentificationMethodsforSHM 248 8.2.1 CoherenceFunction 250 8.2.2 LinearityandReciprocityChecks 251 8.2.3 HarmonicDistortion 256 8.2.4 FrequencyResponseFunctionDistortions 261 8.2.5 ProbabilityDensityFunction 264 8.2.6 CorrelationTests 266 8.2.7 TheHolderExponent 266 8.2.8 LinearTimeSeriesPredictionErrors 271 8.2.9 NonlinearTimeSeriesModels 273 8.2.10 HilbertTransform 277 8.2.11 NonlinearAcousticsMethods 279 8.3 ApplicationsofNonlinearDynamicalSystemsTheory 280 8.3.1 ModellingaCrackedBeamasaBilinearSystem 281 8.3.2 ChaoticInterrogationofaDamagedBeam 282 8.3.3 LocalAttractorVariance 284 8.3.4 DetectionofDamageUsingtheLocalAttractorVariance 286 8.4 NonlinearSystemIdentificationApproaches 288 8.4.1 RestoringForceSurfaceModel 288 8.5 ConcludingCommentsRegardingFeatureExtractionBasedonNonlinearSystem Response 291 References 292 9 MachineLearningandStatisticalPatternRecognition 295 9.1 Introduction 295 9.2 IntelligentDamageDetection 295 9.3 DataProcessingandFusionforDamageIdentification 298 9.4 StatisticalPatternRecognition:HypothesisTesting 300 9.5 StatisticalPatternRecognition:GeneralFrameworks 303 9.6 DiscriminantFunctionsandDecisionBoundaries 306 9.7 DecisionTrees 308 9.8 Training–MaximumLikelihood 309 9.9 NearestNeighbourClassification 312 9.10 CaseStudy:AnAcousticEmissionExperiment 312 9.10.1 AnalysisandClassificationoftheAEData 314 9.11 Summary 320 References 320 10 UnsupervisedLearning–NoveltyDetection 321 10.1 Introduction 321 10.2 AGaussian-DistributedNormalCondition–OutlierAnalysis 322 10.3 ANon-GaussianNormalCondition–ANeuralNetworkApproach 325 xii Contents 10.4 NonparametricDensityEstimation–ACaseStudy 329 10.4.1 TheExperimentalStructureandDataCapture 331 10.4.2 PreprocessingofDataandFeatures 332 10.4.3 NoveltyDetection 333 10.5 StatisticalProcessControl 338 10.5.1 FeatureExtractionBasedonAutoregressiveModelling 339 10.5.2 TheX-BarControlChart:AnExperimentalCaseStudy 340 10.6 OtherControlChartsandMultivariateSPC 343 10.6.1 TheSControlChart 344 10.6.2 TheCUSUMChart 344 10.6.3 TheEWMAChart 345 10.6.4 TheHotellingorShewhartT2Chart 346 10.6.5 TheMultivariateCUSUMChart 347 10.6.6 TheMultivariateEWMAChart 347 10.7 ThresholdsforNoveltyDetection 348 10.7.1 ExtremeValueStatistics 348 10.7.2 TypeIandTypeIIErrors:TheROCCurve 354 10.8 Summary 359 References 359 11 SupervisedLearning–ClassificationandRegression 361 11.1 Introduction 361 11.2 ArtificialNeuralNetworks 361 11.2.1 BiologicalMotivation 361 11.2.2 TheParallelProcessingParadigm 364 11.2.3 TheArtificialNeuron 365 11.2.4 ThePerceptron 366 11.2.5 TheMultilayerPerceptron 367 11.3 ANeuralNetworkCaseStudy:AClassificationProblem 372 11.4 OtherNeuralNetworkStructures 374 11.4.1 FeedforwardNetworks 374 11.4.2 RecurrentNetworks 375 11.4.3 CellularNetworks 375 11.5 StatisticalLearningTheoryandKernelMethods 375 11.5.1 StructuralRiskMinimisation 375 11.5.2 SupportVectorMachines 377 11.5.3 Kernels 381 11.6 CaseStudyII:SupportVectorClassification 382 11.7 SupportVectorRegression 384 11.8 CaseStudyIII:SupportVectorRegression 386 11.9 FeatureSelectionforClassificationUsingGeneticAlgorithms 389 11.9.1 FeatureSelectionUsingEngineeringJudgement 390 11.9.2 GeneticFeatureSelection 390 11.9.3 IssuesofNetworkGeneralisation 395 11.9.4 DiscussionandConclusions 397 11.10 DiscussionandConclusions 398 References 400 12 DataNormalisation 403 12.1 Introduction 403 12.2 AnExampleWhereDataNormalisationWasNeglected 405

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.