Table Of ContentStructural Equation
Modelling with Partial
Least Squares Using
Stata and R
Structural Equation
Modelling with Partial
Least Squares Using
Stata and R
Mehmet Mehmetoglu
Department of Psychology,
Norwegian University of Science and Technology
Sergio Venturini
Department of Management,
Università degli Studi di Torino
First edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742
and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
© 2021 Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, LLC
The right of Mehmet Mehmetoglu and Sergio Venturini to be identified as the authors of the editorial
material, and of the authors for their individual chapters, has been asserted in accordance with
sections 77 and 78 of the Copyright, Designs and Patents Act 1988.
Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk
Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.
ISBN: 9781482227819 (hbk)
ISBN: 9780429170362 (ebk)
Typeset in CMR10
by KnowledgeWorks Global Ltd.
To Rannvei Sæther [M]
A Deborah,
il mio tesoro più prezioso,
per quello che fai,
per quello che sei [S]
Contents
Preface xiii
Authors xix
ListofFigures xxi
ListofTables xxix
ListofAlgorithms xxxi
Abbreviations xxxiii
GreekAlphabet xxxvii
I PreliminariesandBasicMethods 1
1 FramingStructuralEquationModelling 3
1.1 WhatIsStructuralEquationModelling? . . . . . . . . . . . . . . . 3
1.2 TwoApproachestoEstimatingSEMModels . . . . . . . . . . . . 6
1.2.1 Covariance-basedSEM . . . . . . . . . . . . . . . . . . . . 6
1.2.2 PartialleastsquaresSEM. . . . . . . . . . . . . . . . . . . 8
1.2.3 ConsistentpartialleastsquaresSEM . . . . . . . . . . . . . 9
1.3 WhatAnalysesCanPLS-SEMDo? . . . . . . . . . . . . . . . . . 10
1.4 TheLanguageofPLS-SEM . . . . . . . . . . . . . . . . . . . . . 11
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 MultivariateStatisticsPrerequisites 15
2.1 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 PrincipalComponentAnalysis . . . . . . . . . . . . . . . . . . . . 19
2.3 SegmentationMethods . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Clusteranalysis . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1.1 Hierarchicalclusteringalgorithms . . . . . . . . 30
2.3.1.2 Partitionalclusteringalgorithms. . . . . . . . . . 39
2.3.2 Finitemixturemodelsandmodel-basedclustering . . . . . 42
2.3.3 Latentclassanalysis . . . . . . . . . . . . . . . . . . . . . 48
2.4 PathAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5 GettingtoPartialLeastSquaresStructuralEquationModelling . . . 56
vii
viii Contents
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Appendix:RCommands . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Thebootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Principalcomponentanalysis . . . . . . . . . . . . . . . . . . . . . 62
Segmentationmethods . . . . . . . . . . . . . . . . . . . . . . . . 65
Latentclassanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 74
Pathanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Appendix:TechnicalDetails . . . . . . . . . . . . . . . . . . . . . . . . 80
Moreinsightsonthebootstrap . . . . . . . . . . . . . . . . . . . . 80
Thealgebraofprincipalcomponentsanalysis . . . . . . . . . . . . 82
Clusteringstoppingrules . . . . . . . . . . . . . . . . . . . . . . . 84
Finitemixturemodelsestimationandselection . . . . . . . . . . . 86
Pathanalysisusingmatrices . . . . . . . . . . . . . . . . . . . . . 87
3 PLSStructuralEquationModelling:SpecificationandEstimation 89
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 ModelSpecification . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.1 Outer(measurement)model . . . . . . . . . . . . . . . . . 93
3.2.2 Inner(structural)model . . . . . . . . . . . . . . . . . . . 96
3.2.3 Application:Touristssatisfaction. . . . . . . . . . . . . . . 97
3.3 ModelEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3.1 ThePLS-SEMalgorithm . . . . . . . . . . . . . . . . . . . 102
3.3.2 StageI:Iterativeestimationoflatentvariablescores . . . . 103
3.3.3 StageII:Estimationofmeasurementmodelparameters . . . 107
3.3.4 StageIII:Estimationofstructuralmodelparameters . . . . 107
3.4 Bootstrap-basedInference . . . . . . . . . . . . . . . . . . . . . . 108
3.5 TheplssemStataPackage . . . . . . . . . . . . . . . . . . . . . 110
3.5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.5.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.5.3 Storedresults . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.5.4 Application:Touristssatisfaction(cont.) . . . . . . . . . . . 113
3.6 MissingData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.6.1 Application:Touristssatisfaction(cont.) . . . . . . . . . . . 121
3.7 EffectDecomposition . . . . . . . . . . . . . . . . . . . . . . . . 123
3.8 SampleSizeRequirements . . . . . . . . . . . . . . . . . . . . . . 127
3.9 ConsistentPLS-SEM . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.9.1 Theplssemccommand. . . . . . . . . . . . . . . . . . . 130
3.10 HigherOrderConstructs . . . . . . . . . . . . . . . . . . . . . . . 134
3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Appendix:RCommands . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Theplspmpackage . . . . . . . . . . . . . . . . . . . . . . . . . 141
ThecSEMpackage . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Appendix:TechnicalDetails . . . . . . . . . . . . . . . . . . . . . . . . 151
AformaldefinitionofPLS-SEM . . . . . . . . . . . . . . . . . . . 151
MoredetailsontheconsistentPLS-SEMapproach . . . . . . . . . 153
Contents ix
4 PLSStructuralEquationModelling:AssessmentandInterpretation 155
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.2 AssessingtheMeasurementPart . . . . . . . . . . . . . . . . . . . 156
4.2.1 Reflectivemeasurementmodels . . . . . . . . . . . . . . . 156
4.2.1.1 Unidimensionality . . . . . . . . . . . . . . . . . 156
4.2.1.2 Constructreliability . . . . . . . . . . . . . . . . 157
4.2.1.3 Constructvalidity . . . . . . . . . . . . . . . . . 157
4.2.2 Higherorderreflectivemeasurementmodels . . . . . . . . 159
4.2.3 Formativemeasurementmodels . . . . . . . . . . . . . . . 160
4.2.3.1 Contentvalidity . . . . . . . . . . . . . . . . . . 161
4.2.3.2 Multicollinearity . . . . . . . . . . . . . . . . . . 161
4.2.3.3 Weights . . . . . . . . . . . . . . . . . . . . . . 163
4.3 AssessingtheStructuralPart . . . . . . . . . . . . . . . . . . . . . 163
4.3.1 R-squared . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.3.2 Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . 165
4.3.3 Pathcoefficients . . . . . . . . . . . . . . . . . . . . . . . 165
4.4 AssessingaPLS-SEMModel:AFullExample . . . . . . . . . . . 167
4.4.1 Settingupthemodelusingplssem . . . . . . . . . . . . . 167
4.4.2 EstimationusingplsseminStata . . . . . . . . . . . . . . 170
4.4.3 Evaluationoftheexamplestudymodel . . . . . . . . . . . 172
4.4.3.1 Measurementpart . . . . . . . . . . . . . . . . . 172
4.4.3.2 Structuralpart . . . . . . . . . . . . . . . . . . . 176
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Appendix:RCommands . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Appendix:TechnicalDetails . . . . . . . . . . . . . . . . . . . . . . . . 183
ToolsforassessingthemeasurementpartofaPLS-SEMmodel . . . 183
ToolsforassessingthestructuralpartofaPLS-SEMmodel . . . . . 185
II AdvancedMethods 187
5 MediationAnalysisWithPLS-SEM 189
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.2 BaronandKenny’sApproachtoMediationAnalysis . . . . . . . . 189
5.2.1 ModifyingtheBaron-Kennyapproach . . . . . . . . . . . . 191
5.2.2 AlternativetotheBaron-Kennyapproach . . . . . . . . . . 192
5.2.3 Effectsizeofthemediation . . . . . . . . . . . . . . . . . 195
5.3 ExamplesinStata . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3.1 Example1:Asingleobservedmediatorvariable . . . . . . 196
5.3.2 Example2:Asinglelatentmediatorvariable . . . . . . . . 198
5.3.3 Example3:Multiplelatentmediatorvariables . . . . . . . . 203
5.4 ModeratedMediation . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Appendix:RCommands . . . . . . . . . . . . . . . . . . . . . . . . . . 208