ebook img

Strong coupling electrostatics for randomly charged surfaces PDF

19 Pages·2015·1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strong coupling electrostatics for randomly charged surfaces

Soft Matter ce. PAPER View Article Online n ce View Journal | View Issue Li d e ort Strong coupling electrostatics for randomly p n U 0 charged surfaces: antifragility and effective AM. cial 3. Citethis:SoftMatter,2015,11,3441 interactions 9 er 1m 1:m 2:1Co Malihe Ghodrat,a Ali Naji,*a Haniyeh Komaie-Moghaddama and Rudolf Podgornikbc 1n 23 No 20n- We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric 3/3/utio surfacescarryingquenched,randommonopolarchargeswithequalmeanandvariance,bothwhenthe d on Attrib Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric des ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk an nlomo reservoir.Weanalyzetheconsequencesthatfollowfromtheinterplaybetweensurfacechargedisorder, owom dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent DC uary 2015. a Creative cbaroeetuwneateettrnrioatcnhtseedsounrtfoathwceeasr.ddIsinstartibhdueietiloescnutrrfoiacfcaeltlyshehsowemithioogneasneasoninudgsutshlyaesrt,eemffde,iswcotreidvesehr-oiniwntdetruhacacettdiothnepomprtueelnstsitvuiaarlleentththacetoyudnmitveeerdrioiganetess 3 Februnder ltohgaatreitxhhmibicitasllyanonalagpepbrroaiacchditvoertgheenscuerfaatcetsh,ecrseuartfiancgesawsinitghualanrbeuxptoinnteengtratbhleatcdoeupnetenrdiosnodnenthseityspurrofaficlee d on 2ensed cthhaatrgcean(dbiseorddeesrc)rvibareidanbcye.aThreisnoeffrmecatlizderdivetsemthpeesraytsuterem, etoxhwiabritdinsgatshtautseaofrelomwaerkratbhleermanatlif‘rdaigsoilirtdye.rI’n,otnhee Article. PublisheThis article is lic psroaurnnerfdstaheocnemecssleyuirsocfahfrceaaermngsoedidvniestspedulrafrbayfaucsctiaienlmsdguaieseltnlievceacorlatmerlincpatahdrceiiogsdcuhonlwyntiettnirhnoioununi-tnsymi,foaotrrhnemeolstyotsiinlcnlihgcaaucrblcgaeuerhmdabvueoihlonaaretvesaid.osTramhoefufucinnchcotetmuironaoncterteoiroifonstnthrpoedrneeignsnsltyseuitrrcy-elsouaastrceftatinhctogee s separationwitha prominentregime of attractionat small to intermediate separations. This attractionis s e cc caused directly by the combined effects from charge disorder and strong coupling electrostatics of A n multivalentcounterions,whichdominatethesurface–surfacerepulsionduetothe(equal)meancharges e Op onthetwosurfacesandtheosmoticpressureofmonovalentionsresidingbetweenthem.Theseeffects Received21stDecember2014 canbequitesignificantevenwithasmalldegreeofsurfacechargedisorderrelativetothemeansurface Accepted23rdFebruary2015 charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der DOI:10.1039/c4sm02846e Waals interaction between the surfaces, especially within a range of several nanometers for the inter- www.rsc.org/softmatter surfaceseparation,wheresucheffectsarepredictedtobemostpronounced. I. Introduction charge attractioninduced bymultivalent counterions between charged surfaces of the same sign. The like-charge attraction The counter-intuitive electrostatic effects produced by mobile phenomena stand at odds with the weak coupling (WC) para- multivalent counterions in the vicinity of charged macromo- digmbasedtraditionallyonthemean-eldPoisson–Boltzmann lecular surfaces (such as biopolymers like DNA, membranes, (PB) theory.9–13 They require the framework of the strong colloids,nano-particlesandvirus-likenano-capsids)havebeen coupling(SC)theories1–7,14–19thatincorporatestrongion–surface studied extensively within the counterion-only models and in correlations,totheleadingorder,andion–ioncorrelations, to the case of non-disordered, homogeneous surface charge subleading orders, ubiquitous in the situation where electro- distributions(see,e.g.,recentreviewsinref.1–8andreferences static interactions are strong; this is realized at low tempera- therein).Theseeffectsinclude,mostnotably,theso-calledlike- tures,solventswithlowdielectricconstant,and/orwithhighly chargedmacromolecularsurfacesbut,mostprominently,with multivalent counterions. Usually, however, charged bio-so aSchool of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran systems with multivalent counterions include also a nite 19395-5531,Iran.E-mail:[email protected] amountofmonovalentsaltionsthatcoupleweaklytocharged bDepartmentofTheoreticalPhysics,J.StefanInstitute,SI-1000Ljubljana,Slovenia surfaces. A few experimental examples of such systems are cDepartmentofPhysics,FacultyofMathematicsandPhysics,UniversityofLjubljana, furnishedbythecondensationofDNAbymultivalentcationsin SI-1000Ljubljana,Slovenia Thisjournalis©TheRoyalSocietyofChemistry2015 SoftMatter,2015,11,3441–3459 | 3441 View Article Online SoftMatter Paper the bulk20–26 or in viruses and virus-like nano-capsids,27–29 and In the most realistic model of the interaction between formation of large aggregates (or bundles) of highly charged chargedmacromolecules,onewouldthusneedtoconsidernot biopolymers such as DNA,30,31 F-actin32 and microtubules.33 In only an asymmetric conned Coulomb uid between macro- these situations, one deals with a difficult problem in which molecular surfaces, with a mixture of mono- and multivalent e. c neithertheWCnortheSClimitinglawscanbeappliedwithout salt ions, but also surface charges that exhibit a disordered n Lice reservations. For such asymmetric Coulomb uids, a general- component.Whileoffhandthisseemstobelikeaformidable d izeddressedmultivalent-ionapproach,thatbridgesthetwolimits task,detailedcalculationshaveshownthatthenalresultsare e ort in one single theoretical framework, has been introduced7,34 rather intuitive and revealing.56–64 First of all, it became clear p n U and tested against extensive explicit- and implicit-ion that, for quenched charge disorder, which is of interest in this AM. cial 3.0 simIunlactoiounnst.e7r,3i4o–3n8-only systems and in the case of uniformly psoalpuetrio,nansdubinphthaseeaabnsdentcheeomfadcireolemctorlieccauslaymrsmureftarcyeb,ethtweereenistnhoe 12:11:19 nCommer occohfuatphrgleienedglespcuatrrrfaoamscteeastteiwrciXitnh¼tesurqar2cf‘atic/omenc¼shi2asrpgdqee3s‘dcer2nisbs.e1i4tdyItb(cid:1)iyssteth0h,eetehrlaeetcsitotrrooesnftagthttihec SdCinsdolsrimdaeilrto-niangnd-druacinengdetdheff,edesicsatomirndeetgrh-eeinnWedruaCclerrdeeggaiitmmtreae.c5t6oi,5fo8npH,aworawhmeicvehetrem,rsiun,sottnhbeee 2023 n-No rescaled Bjerrum length,Bq2lB with ‘BB ¼ e02/(4p330kBT), that addedtotherepulsiveforcebetweenequallychargedsurfaces.56 3/3/utio measures the strength of electrostatic interactions between It has also been shown that in the linear WC regime with ded on s Attrib lceonugntthe,rimon¼s1o/(f2pchlBaqrsg)e, tvhaaltenmceyasqu,reasndthethsetreGnoguthy–oCfhealpecmtraon- Gquaeunsscihaenddeilsdo-rduecrtuwaotiuolndslaeraodutnodrtehpeumlsievaeno-realdttrsaocltuitvieonin,ttehre- oaon staticinteractionbetweenacounterionandthesurfacecharge actions provided that the system has an inhomogeneous nlm wm inunitsofthermalenergyk T(conventionally,wetakes>0and dielectricconstantormonovalentsaltdistribution(inthiscase, oo B d on 23 February 2015. Densed under a Creative C qvtsSitohhuaC>nerlreefsr0cnaee,o)c-tg.edueiclIminetonmhctueetaten,rhrtnoiXtecosesainrtW[oainsontCibnfacoes1lrr,i,edimntogtehtynisepmaecirricradcemica,bictffalleXilooluydunes(cid:3)rbdneseyeaga1artlarhb,igzseyotee-ylvlidmipasekirweecdgtaahoieptnlemhlhe-yancimrnsehoeelaauuadnrnllgtgiPtehzieBvaxedatndttlohtdesowneu,rioettarthfdrhcacyeuoch.rmcueIeaennfortogtnotterhheoerdaee--, rseincneuffept¼roeeJfucuuralt2ascssscpetiotsaqiisnnos2au‘nnatrBtshrfd2haiegsbecv,eceeisqcoctewuauwcsavpehheneeleirantnnsoiraggfmt)eeh.pds5soe7a,i,bt5rsm9haio–ltem6ereh3ddeseceittuorreeeumdrdnniXsgitossetqrhurmduiroeofaornafnrcsetteihcspaoenoeuwsldpdailtirtihsihnozexgaregedbdlelp,eebrca-hettirhinroanoamdmgsnuteoactttgtehheierdeec-, Article. PublisheThis article is lic cqaau2naDSsbuice-btrswgyeseoqtn-audelei.rm1na–l7tei,1zsn4e–ts1udi6od,1t9nioeasml,aoslrstreoocnroegmvleypacllioecdrartetehldaattaednthdleiqrWeuaiCldi–sltSaiCcyespri,atuoraardteiiovgenmns ssenuttoaerttrfiisacs,cetieaXcbacllayhndaldierssgtscrei,bdvuaraartreisiotainvnce.c5rm6ey–5a8wsniOimntbheivrilianooruntbshluteyht,etGthhvaeaeultselwsnaiotcatynecroouAfdpnetlshpianeetngzcdopfsuoanrriantmeitras-- s usually encountered in an experimental context, with an ions.Justastheoverallfeaturesofthebehaviorofasystemwith ces asymmetricCoulombuidcomprisingamixtureofmono-and homogeneous charge distributions depend on the value of X, c n A multivalent ions in the vicinity of charged macromolecular the behavior of a disordered system depends in a very funda- pe interfaces. Neither the WC nor the SC paradigm can be mentalmannernotonlyontheexactvalueofc,butalsoonthe O consistentlyappliedtothis situationwherethesystemiselec- presence of salt ions and dielectric inhomogeneities (“image trostaticallypartstronglyandpartweaklycoupled.Inthiscase charges”)inthesystem.59–64 the dressed multivalent-ion theory, based on piecewise applica- Here,westudytheeffectiveinteractionmediatedbystrongly tionoftheWCandSCformalism,hasbeenshowntopossessa coupled Coulomb uids between two plane-parallel dielectric robust regime of validity.7,34–38 Other cases demanding an surfaces carrying quenched, random monopolar charges with extension and/or modication of the WC–SC framework have equal mean and variance, both when the Coulomb uid beenrecentlyreviewedinref.7. consists only of mobile multivalent counterions and when it Aseparateissue,ofthenatureofthechargedistributionon consists of an asymmetric ionic mixture. We analyze the macromolecularsurfaces,hasalsoreceivedprogressivelymore consequences that follow from the interplay between surface focused attention. In many cases, these surfaces are not only chargedisorder,dielectricandsaltimageeffects,andthestrong inhomogeneous in terms of their charge conguration, but electrostaticcouplingthatresultfrommultivalentcounterions exhibitafundamentallydisordereddistributionofcharges2,39–72 on the distribution of these ions and the effective interaction dictatedeitherbythemethodofsamplepreparationand/orby pressurethey mediatebetweenthesurfaces. Inadielectrically the inherent structural properties of the surface materials.39–48 homogeneoussystem,themultivalentcounterionsarefoundto These disordered systems, with either thermalized, annealed be attracted towards the surfaces with a singular, disorder- surfacecharges50,51,59,60,66–71orstructurallydisordered,quenched inducedpotentialthatdivergeslogarithmicallyonapproachto surface charges2,47–67 (or even partially annealed or partially the surfaces, creating a singular but integrable counterion quenchedones58,72)havereceivedamorerigorousattention,as density prole that exhibits an algebraic divergence at the it is becoming clear that the nature of charge disorder can surfaces with an exponent given by the disorder coupling interfere fundamentally with the behavior of the system parameter.Thiseffectdrivesthesystemtowardsastateoflower approximatedwithxed,homogeneoussurfacecharges. thermal‘disorder’,onethatcanbedescribedbyarenormalized effective temperature, exhibiting thus a remarkable 3442 | SoftMatter,2015,11,3441–3459 Thisjournalis©TheRoyalSocietyofChemistry2015 View Article Online Paper SoftMatter antifragility73 reported in a previous work by the present chargedistributionr(r),characterizedbyaGaussianprobability authors.64Wethusndthat,inthisgeneralcontextofstrongly weight ð coupled,disorderedsystems,anti-fragilebehaviorisubiquitous ​ (cid:2) (cid:3) e. and stems from the interplay of structural and thermal P½r(cid:4):¼Ce(cid:1)12 drg(cid:1)1ðrÞ rðrÞ(cid:1)r0ðrÞ 2: (1) c disorder,withtheformerengenderingadecreaseinthetrans- n e Lic lationalentropyofmultivalentcounterionsasaconsequenceof d the fact that the disordered charge distribution generates a Here, C is a normalization factor and r (r) and g(r) are the e 0 ort nite degree of (non-thermal) congurational entropy. In the mean and the variance of the disordered charge distribution, p Un presenceofaninterfacialdielectricdiscontinuity,thesingular respectively.Forthespecicmodelconsideredhere,weassume 0 AM. cial 3. bbeuhtamviuolrtiovafltehnetccoouunntteerriioonnsdaernesisttyilaltacthcuemsuurlfaatceedsmisurcehmmovoerde tahreatstthateiscthicaarlglyeiddiesntrtiibcualtiaonndsognivethnebiynnersurfacesoftheslabs 19 mer stronglyclosetorandomlychargedsurfacesascomparedwith 2:11:Com uniformlychargedones.Theinteractionpressurebetweenthe r0(r)¼(cid:1)se0[d(z+d/2)+d(z(cid:1)d/2)], (2) 1n surfacesdisplaysingeneralahighlynon-monotonicbehavioras 2023 n-No a function of the inter-surface separation with a prominent g(r)¼ge02[d(z+d/2)+d(z(cid:1)d/2)], (3) oaded on 3/3/ons Attributio ciraoehttngarisarm,gcweteiohdonificshaoitsrtddroaecmcartuiiaosnnenaddtaeStdtChsirmeeecalsetulllcyrttfroaobcsiyent–attstehiurcemrsfaecocodfemiamrtbeeupinlsuteeilvdspaiaolreenaffntdetiocucnteossut.ofnTrtothehmires- w(innhiegtreeend,eiwsraoitlrh,dtehnreovsaulrorisafasnccoeesf,mwgehaniyceahralswloiteyh,sahwvaeellntcoaoknneestigdceh$rarin0gedabneutdatiolsne>llsye0a- nlm where74).Wedevelopthemainformalismforanarbitraryshape wm (equal) mean charges on the two surfaces and the osmotic Article. Published on 23 February 2015. DoThis article is licensed under a Creative Co stpecmSdtchhuhofferisoeeecnraeoTfsdtrsccairshgeeitoocdudsefflenenereaeidoercrnpIcreleriIeoutrsdgIdsSeof.saqsecirminTuosocndoihuintfoeuztiSerareonneasetno(tdsanicveiovilitdsagrItsianIiorntlosdirenioaaitnioinubfnnsn-ItcdcutocdVshausineteniaesB)plodalyst.rprtnnieeeocaTiidslnvoaopnaheensfetnenSediisrnmvetibiweirecssoeeuStlitehiuseatlsoothicctsaridnuttvtvrfaiithsdaiooinhocleislnIgeeerlmVonmodibVownrtaCefe.eihlsnctat–ltw:ooihnIdcwSVmueeaeeseenlgocuEentirtgfffre,nieotfeorefteharinorncmoceooetlenmlidIifaovtVsculeisw.iehucisTAesinaemrnhdfraotateganehbucsirerndeeeeyr.- actsmoedsrchellaoxfiaimpeueasmttbTlermlheuts(cid:1)opchi(eclpdhvpoettdaaicrluars/veirlha2ercsceaegcdaelonlatce#erfitoabotgnchtsfvncseathszaaeodlsuqellautmye#msabr:,tnntenwoo1matectdeunnodyasru/3noda2sipmloovdaslt.tltaonifuraacvTdlomsrnoeamhibfnlnaeaceeieburstrtsodna,eul1usttiipwllinmnat:kcavaohsitoa1brnpescilutsusrcoeegbinicahnrnmdeouamlttcetnewnleeisaore-cdmenociraafoorntbsbttmunircohylbluanoysemeeetlbntirkcndreomesstaercoentanasicreodoupbaotcnbmnlrpio0ntcniieslvscnowey.t5epnbn6Ci.tTretaiteoeoahlrnhdevasutaseeqthlowbianiooeo>ldlimtuentnleis0sihtedbsmpinlio.beune0fincecrstaTtuotiiinrnnhhmiotiddoggeeccf ss entering the outer regions, |z| > d/2 + b, by enclosing these e Acc II. The model regions in semi-permeable membranes). This assumption has en noimpactonourresultsinalargepartoftheparameterspace, Op We consider two plane-parallel dielectric slabs of innite e.g.,forslabthicknesseslargerthantheDebyescreeninglength, surface area S, nite thickness b and dielectric constant 3p, andespeciallyforsemi-inniteslabsthatwillbeofmaininterest placed perpendicular to the z axis with the inner bounding inthiswork. surfaces separated by a distance d (see Fig. 1). The outer boundingsurfacesoftheslabsareassumedtobeneutral,while III. The formalism theinneronescarryaquenched,spatiallyuncorrelated,random A. Dressedmultivalent-iontheory The problem of an asymmetric Coulomb uid containing monovalent and multivalent ions next to charged macromo- lecularsurfacesisacomplicatedone,mainlybecausedifferent components of the Coulomb uid couple differently to the surface charges: multivalent counterions tend to couple strongly, and therefore generate non-mean-eld effects, whereasmonovalentanionsandcationscoupleweakly,andare thus expected to follow the standard mean-eld paradigms as they would in the absence of multivalent ions.9–13 Strong Fig.1 Schematicviewoftwoinfinite,plane-paralleldielectricslabsof coupling effects due to multivalent counterions within the thickness b and dielectric constant 3p in a bathing ionic solution of counterion-onlymodelscanbedescribedwellusingtherecent dielectricconstant 3 , containinga monovalent and multivalent salt m SC theories that have been studied thoroughly over the last mixture(withmultivalentcounterionsshownbylargebluespheresand several years (see, e.g., ref. 1–8 and references therein). In the monovalentsaltanionsandcationsshownbysmallorangeandblue spheres).Themultivalentcounterionsareconfinedintheslitbetween caseofanasymmetricCoulombuid,althoughitisnotapriori therandomlychargedinnersurfacesoftheslabs. clear if a single approximation can be introduced in order to Thisjournalis©TheRoyalSocietyofChemistry2015 SoftMatter,2015,11,3441–3459 | 3443 View Article Online SoftMatter Paper describethehybridnatureoftheelectrostaticcouplingsinthe function can be virial-expanded in terms of the counterion presence of charged boundaries, it turns out that a simple fugacity,l ,as c generalizationofthecounterion-onlySCtheory,5–7,14–18dubbed dressedmultivalent-iontheory,providesaverygoodapproxima- Z[r]¼Z0[r]+lcZ1[r]+O(lc2), (7) e. c tioninalargepartoftheparameterspaceasdiscussedindetail d Licen tinherepfa.r7titainodn3fu4n–3c8ti.oTnhoisvearptphreoadcehgrieseosbotafifnreededboymrasstsotrcaiacitnedg wleintht-itohnethresotrtywoonterthmeslceoardreinsgpoonrddienrg. tTohtehezedrroetshs-eodrdmerultteirvma- orte withmonovalentionswithinalinearizationapproximationand corresponds to the electrostatic interaction of xed charged p n objectsintheabsenceofmultivalentcounterions, U then virial expanding it with respect to the fugacity of multi- 19 AM. mercial 3.0 viscuaalffiellnyc3ti4ecnootnulylnytleianrrigotehnesc.ocBuaonstetherotifohnhesigevhasllteyenpacssyycmqanmanbedterijpcursmotviiixdeteuddrseysthstwaetimthtahtae- Z0(cid:2)r(cid:3)¼e(cid:1)12lndetG(cid:1) b2 ðdrdr0rðrÞGðr;r0Þrðr0Þ; (8) 12:11:nCom bsmulakllc(aosncisenotraetniotnheocfasmeuinltievxapleenritmceonutanltesryisotnems siscornetlaaitnivienlgy adnudettohemurltsitv-oalrednetrctoeurmntegriivoenssthe single-particle contribution 3/3/2023 ution-No iaosnymicmspeetcriicesioinnitchmesixotluurteiosn20–c3a3)n,nboectabuestereoattheedrwonisesuthcheddiiffffeerreenntt Z1[r]¼Z0[r]ÐdrU(r)e(cid:1)bu(r;[r]). ded on s Attrib lreevveielsw.edThreecednrtelys7sebdridmgeuslttihvaelegnapt-ibonetwteheenortyhedweesacrkibceoduplainndg Here,u(r;[r])isthesingle-particleinteractionenergythathas oaon DH theory and the counterion-only SC theory and reproduces nlm theform uary 2015. Dowa Creative Com tphaermamaestetwrso,rsepsepceicatlilviemlyi.tingcasesatlargeandsmallscreening where Gium(cid:4)(rr;,½rr(cid:4))(cid:5)¼isqteh0eðgder0nGeðrra;lriz0Þerdðr0BÞoþrnq22een02eGrgimyðrc;ornÞ;tributio(n9), Article. Published on 23 FebrThis article is licensed under atBIprinesa.oarnflttoiaiGhztllalie-eooitnnwinodetsnefrr:uaeg36lsnroasffcelotdeifrooxmZntrmem(cid:2)ororunff(cid:3)(las¼tatlheinveeeca,a(cid:1)hliesena12.yngrltmneg.t-rerimdaeosecfnet.trtGi7(rorti5nð)ch–eDcC7foar9ofernuyaee,(cid:1)lnboebdenStmh½ferwbe;errg(cid:4)fr:eiygtrurteeaindnnc,dwe-isicntathhnaaeorfneuixincn(e4acd))l-, wziGibdnnaee0hdt(eiiIricoqcnn,vahnnierltd)dch(,eiuu7seffwta)lhaegcliwtrtcaecheoetsnosdrueueGeg(rono0fsharf(thrtroece(cid:1),otrmodhwri3uo)e0npnn3rt“hemutstiepoerm(irVerngielaso2eysacgnne(cid:1)rebh-eneoyorcetknaihnm2tlnt)hyaeeGgordesagg0ty(eedhsfrnsrti,eneee”erim)elfo0t,eo)-euscisr¼.pctm,seroat.ib,dhancca(tGeetricaroitikmn(cid:1)Gbwngd(urorrr(e/to,s0oeil)ueroe.rn)lannf's¼ds-da)tieo;lnfGtntugth(ehpnrirte,ocsegtlrrfycai)rmoareo(cid:1)nniesf- ss energy,constitutingtheSCtheory.5–7,14–18Thehigher-orderterms e cc contain subleading contributions from multi-particle interac- A pen Here,b¼1/(kBT),f(r)istheuctuatingelectrostaticpoten- tions that become important only in the crossover regime O tialandS[f,r]istheeffective“eld-action”,i.e., betweentheWCandSCregimes.Inthemoregeneralcontextof (cid:2) (cid:3) 1 ð ð thedressedmultivalent-iontheory,theleading-ordervirialterms S f;r ¼ drdr0fðrÞG(cid:1)1ðr;r0Þfðr0Þþi drrðrÞfðrÞ cangenerateboththeSCandWCbehaviorsofthesysteminthe 2 ð limits of small and large screening parameters, respectively.34 (cid:1)kBTlc drUcðrÞe(cid:1)ibqe0f; (5) The predictions of this theory were analyzed for uniformly chargedsurfaces(andalsoforstrictlyneutralsurfaces)andwere wherel ¼c isthefugacity(orbulkconcentration)ofmultivalent comparedwithextensivenumericalsimulationselsewhere.7,34–38 c 0 counterions, U(r) is an indicator function that determines the Inthepresentstudy,thechargedistributionofthedielectric c regionofspacethatisaccessibletomultivalentcounterions(e.g., surfaces,r(r),hasaquenched,Gaussiandisorderedcomponent inthepresentmodel,wehaveU(r)¼(q(z+d/2)(cid:1)q(z(cid:1)d/2)),and withanitevariancearoundthemeanchargedensityr (r).One c 0 G(cid:1)1(r,r0)istheoperatorinverseofGreen'sfunctionG(r,r0)that,in thereforeneedstoaveragethethermodynamicquantities over thedressedmultivalent-iontheory,satisestheDHequation differentrealizationsofthechargedisorderaswell.Hence,for instance,thefreeenergyfollowsfrom (cid:1)30V$3(r)VG(r,r0)+303(r)k2(r)G(r,r0)¼d(r(cid:1)r0). (6) bF ¼(cid:1)hhlnZ[r]ii. (10) Here,k(r)istheDebye(orsalt)screeningparameterwhichis Ð non-zero only outside the region occupied by the dielectric Thedisorderaverageisgivenbyhh.ii¼ Dr(.)P[r]andthe slabs, i.e., k2 ¼ 4pl n , where n ¼ 2n + qc is the bulk Gaussianweightbyeqn(1).TheaveragedquantityhhlnZ[r]iican B b b 0 0 concentrationduetoallmonovalentions.Therefore,theroleof becalculated in general by employing the Edwards–Anderson's monovalent ions is incorporated into the Green's function on replicaAnsatz.56Sinceweareinterestedonlyintheleadingvirial theDHlevel. terms,wecanalsodirectlyaveragetheleading-orderfreeenergy Asnotedbefore,inthepresenceofmultivalentcounterions termsoverthequenchedchargedisorderweight,yielding with sufficiently small bulk concentration, the partition 3444 | SoftMatter,2015,11,3441–3459 Thisjournalis©TheRoyalSocietyofChemistry2015 View Article Online Paper SoftMatter (cid:6)(cid:6) (cid:7)(cid:7) Z (cid:4) (cid:5) slabs (Section2),inwhichcasethe Green'sfunctionG(r, r0)¼ bF ¼(cid:1)hhlnZ0ii(cid:1)lc Z1 þO lc2 : (11) G(r,r0;z,z0),withr¼(x,y)andr0¼(x0,y0)beingthetransverse 0 (in-plane) coordinates, is onlya functionof |r (cid:1) r0|. Thus,its Fourier-BesseltransformGˆ(Q;z,z0)canbedenedby e. The averages in the above expression can be carried out ð d Licenc smtrualitgivhatlfeonrwt-iaorndlfyreaenednewregyonfdthtehseys(tgermanads-canonical) dressed Gðr;r0Þ¼ 0NQ2dpQG^ðQ;z;z0ÞJ0ðQ|r(cid:1)r0|Þ: (15) e ð Unport bF ¼b2 drdr0 r0ðrÞGðr;r0Þr0ðr0Þþb2Tr½gðrÞGðr;r0Þ(cid:4) Usingstandardmethods,wend 0 ð (cid:8) 9 AM. ercial 3. (cid:1)lc drUðrÞe(cid:1)buðrÞ; (12) G^ðQ;z;z0Þ¼23013mg e(cid:1)g|z(cid:1)z0|þ1(cid:1)2ee(cid:1)(cid:1)2g2dgdYYðQ2ðbQÞbÞ (cid:9) 2:11:1Comm wthheeraebtsheencerstoafndmuthlteivsaelceonntdctoeurmntseraiorenst,herecpornetsreibnutitniognsthine (cid:5)(cid:4)egd coshgðzþz0ÞþYðQbÞcoshgðz(cid:1)z0Þ(cid:5) ; (16) 1n 23 No interaction free energies due to the mean surface charge ded on 3/3/20s Attribution- dsiwneeedcnaousknciltydeyd,ctrofeo0ur(rmprc)le,esdaanrbiCdestoewtsuheleoeamnldsiobdsoisirnodureidtdrhe;v5re7ea,5dra9i–na6s3naulcriytefsa,igcsgiev(sreo)sf,inratehvsnaepcoeuncu-tuvimvcaetnuloiyasr.thiiToninhngae- whereg2¼k2+Q2,YðQbÞ¼D1s(cid:1)(cid:4)1D(cid:1)s2ee(cid:1)(cid:1)22QQbb(cid:5); (17) an nlomo contribution only in inhomogeneous systems with a nite and wm Article. Published on 23 February 2015. DoThis article is licensed under a Creative Co sdstoeipninreamWglttehilceaeert-leprllnypeiacoarrietdtneusdiicheðnitlrsnoehgÞcmtao(si¼sntnotittnhtgqeh(cid:1)ieegerne0nalucebðceo-itoptqdrinyou2asrt2et0nrsrG0atit2ibtedðecðrunrli;detsmtehr)tirr0or0eÞlggiienrbynðv06burfeð40reortlÞoi,0q(cid:2)uÞomiGnnnnþðd(wmr1oqi;nh32fru2eg0)iÞl0cst(cid:3)o2hai2svrGl:utaiugilrm(ieirfonða)nrncait;setsrces.ÞtoshTueafhnrneoetffdem/ertocih(ortt1iihnrv3daees) kG^nðoQFwo;nrz;seze0xÞmp¼rie-is2þns3Di0o13nsnmciotges(cid:8)hsel(cid:1)gagDðb|zzss(cid:1)(cid:1)z¼(0|bzþ330/Þmm(cid:5)1gg(cid:9)(cid:1)2:(cid:1)þNDDs33)e,spp2(cid:1)QQoe2(cid:1)gn:d2egdc(cid:5)an(cid:4)ergedcocoveshr tghðezþw((11ezl890lÞ))- ss interaction of multivalent counterions with the mean surface Note that the information about the image charge effects, e c Ac charge density, the second term from the self-interactions of which result from the inhomogeneous distribution of the en individualcounterions(withtheirownimagecharges)andthe dielectric constant or the bathing salt solution in the system, p O third term is due to the presence of surface charge disorder. enters here through the parameter D. In the absence of salt s Thistermisproportionaltothedisordervarianceandshowsan ions (k ¼ 0), D reduces to the bare dielectric discontinuity s explicit temperature dependence and a quadratic dependence parameter oq;nitthaeriGserseefrno'smfuthnectsioamnapnled-ttoh-seammupllteivaulecntutaiotinonchsa(orgrevavarilaennccey), D¼33mm(cid:1)þ33pp: (20) ofthesingle-particleinteractionenergy(9).64 In the SC limit or within the multivalent dressed-ion theory,14,16,34thedensityproleofmultivalentcounterionscan Inthecasestreatedbelow,relevantforaqueoussolventsin be derived solely in terms of the effective single-particle inter- the presence of bounding slabs of low dielectric constant, we delimit ourselves to D $ 0, which gives repulsive image actionenergyas interactions. c(r)¼lcU(r)e(cid:1)bu(r). (14) The effective single-particle interaction energy in the two- slabsystemcanbewrittenusingeqn(13)as Thisconcludestherecapitulationofthemultivalentdressed- uðzÞ¼(cid:1)qse02(cid:2)G^ð0;z;(cid:1)d=2ÞþG^ð0;z;d=2Þ(cid:3) ion theory that forms the basic framework of our analysis of ð electrostatic coupling and quenched charge disorder in what þq2e02 NQdQG^ðQ;z;zÞ 4p follows. 0 ð (cid:1) bq2ge04 NQdQ(cid:2)G^2ðQ;z;(cid:1)d=2ÞþG^2ðQ;z;d=2Þ(cid:3): 4p C. Speciccaseofplanardielectricslabs 0 (21) Thefreeenergyexpression(12)isvalidregardlessoftheshape of the boundaries. In the rest of this paper, however, we shall delimitourselvestothespecicexampleoftwoplanardielectric Thisjournalis©TheRoyalSocietyofChemistry2015 SoftMatter,2015,11,3441–3459 | 3445 View Article Online SoftMatter Paper Thedensityproleofcounterionsintheslitregion,(cid:1)d/2#z N #d/2,followsas(seeeqn(14)) lc ¼ ðd=2 : (26) S dze(cid:1)buðzÞ c(z)¼lce(cid:1)bu(z), (22) (cid:1)d=2 e. c n ce andthegrand-canonicalfreeenergy(perkBTandperunitarea,S) TheGreen'sfunctionofthecounterion-onlymodelreduces d Li canbewrittenas tothe bare Coulombinteraction, G0(r, r0)¼ 1/(4p303m|r (cid:1) r0|), Unporte bSF ¼4p‘kBs2cothðkd=2Þþg‘Bfðk;d;DÞ(cid:1)lcðd=2 dze(cid:1)buðzÞ: iarnredletvhaenteffaedcdtiivtievesincoglnes-ptaanrtticalendintinerarcetsiocanleedneurgnyits()upfotlolowans 0 (cid:1)d=2 straightforwardlyfromeqn(13)or(21)as 9 AM. ercial 3. (23) bu(cid:4)z~(cid:5)¼d~þcln(cid:10)d~2(cid:1)z~2(cid:11): (27) 1m 2 4 2:11:Com In the above expression, the different contributing terms 1n appearinthesameorderasineqn(12)andwehave ded on 3/3/2023 s Attribution-No wherewehavefoðmk;idt;teDdÞhirrðe0NlevQadnQtagdD(cid:4)desð2i1dtgivþ(cid:1)eDtDesÞrs22m(cid:5);sthatarein(2d4e)- gisnuedorNfimavoicedteteuryatclhhoaafctrogtuwhenesh,tiemlerti,hoodebneeslcc,aofturuhosnemetreeoriftiohsntehnseo(oespnxyppemtoemrsaiiettetentrlrcayiecctsipoiaglnnanneaaedc-t)tptiranamrgcaetlioalvennel oaon pendentofthesurfaceseparation,d.Theinteractionfreeenergy potentialduetothequenchedsurfacechargedisorder,whichis nlm wm followsfromeqn(23)bysubtractingallsuchtermsor,inother givenbythesecondtermineqn(27). oo 3 February 2015. Dunder a Creative C DIbwtyo.isrrdecDsso,icnmatvhleeiennngrsieeionftehntrelteeonssmpcsearatefkirpaeerleeucsseoeenoneortrdfagatiyniodaonitfmetsehnwesisitoyhsnttleehmsesfGsoeortudoyf–/qCuhaNanp.tmitiaens obtTahineedrebcs~y(cid:4)cza~u(cid:5)leshdin2gdpceeð‘zn~qBÞssni2t(y¼22p(cid:10))raod2~s(cid:11)leC0o(cid:1)f1ðccoÞu(cid:10)n14t(cid:1)eridoz~~2n2(cid:11)s(cid:1)icn=2;the sli(t28is) ss Article. Published on 2 This article is licensed lap8oecpfancrmqgoa2trmu‘hdBleitcmnit0ve,g¼arwllyeh1,an/ien(ct.2dghcp.o,iaqdstu~hnlrnB¼eestfaei)ednrnra/itmraoseel,nr~ord~k-sgs¼t,uo¼oiur.raef/ksa.smlm,cy.t,ehOc~dsetceehrp¼eeansrrccepaacdtalmiero.dlanembn,utgehlttkheercssosaacnltarcelseecrn,retesrcecacnat2(iil2one5¼ndg) wherewehavedeC0nðceÞd¼2(cid:1)1þcpffipffiffiffi GG(cid:10)(cid:10)132(cid:1)(cid:1)c2c2(cid:11)(cid:11): (29) ce In the no-disordered case (c ¼ 0), the above expression n Ac The rescaling of the Bjerrum length leads to the dimen- reducestothestandardSCdensityprole~c(~z)¼2/d~.3,5–7,14–16As pe sionless electrostatic coupling parameter X ¼ q2‘ /m ¼ showninFig.2,thedensityproleofmultivalentcounterionsis O B 2pq3‘ 2s, associated with the mean surface charge density,14 strongly modied by the surface charge disorder and exhibits B while the surface charge variance appears in the dimen- algebraic singularities close to the randomly charged bound- sionless disorder coupling (or disorder strength) parameter, aries at z ¼ (cid:6)d/2 for any nite value of the disorder coupling c ¼ 2pq2‘ 2g.56 The rescaling of the density prole and the parameter, in clear violation of the contact-value theorem B interactionpressurewillbediscussedlater. established for uniformly charged surfaces.80–83 This kind of behaviorwasdiscussedinourrecentworkonthedistributionof IV. Results multivalent counterions next to a single, randomly charged interface64 and we shall not delve further into the details, A. Distributionofcounterions:thecounterion-onlymodel makingonlyafewremarksinwhatfollows. Letusrstconsiderthedistributionofmultivalentcounterions Thesingularbehaviorofthecounteriondensityprolecomes inthespecialcaseofthecounterion-onlymodel,wherethesalt directly from the logarithmic disorder term in the single-particle screeningandimagechargeeffectsaresettozerobyassuminga energy in eqn (27), which drives the counterions towards the homogeneoussystemwithk¼0andD¼0,orequivalently,3 ¼ surfaces. The density of counterions away from the surfaces p 3 (this case was considered in a previous work,56 which decreasesasthedisordercouplingparameterincreases(Fig.2)and, m however focused only on the effective interaction between the eventually,ittendstozero~c(~z)/0forany|~z|<d~/2whenc/2(cid:1) surfaces and did not investigate the distribution of counter- sinceC (c)/N.Counterionsarethusdenselyaccumulatedinthe 0 ions). The two impermeable, randomly charged surfaces are immediatevicinityofthe surfaces.Thisbehavior must be distin- placedataseparationdistance,d,conningintheslitbetween guishedfromthesurfaceadsorptionorcounterioncondensation them a xed number of multivalent counterions, N, which is phenomena7as,inthepresentcontext,onecanshowsystematically givenbythemeanchargeonthetwosurfacesthroughtheglobal that the mean surface charge is not renormalized by the surface electroneutrality condition, Nq ¼ 2Ss. Hence, the fugacity of accumulationofcounterions(seeAppendixCinref.58). counterionsisgivenby14,56 3446 | SoftMatter,2015,11,3441–3459 Thisjournalis©TheRoyalSocietyofChemistry2015 View Article Online Paper SoftMatter Another notable point is that the renormalization of the repulsiveentropictermbyafactor1(cid:1)ccanbeinterpretedalso asarenormalizationoftheeffectivetemperatureofthesystem to a lower value. However, this interpretation should be ce. considered with caution because rst, this particular form of n e Lic the renormalization of the repulsive pressure is found only in d the SC limit of the two-surface counterion-only model and, e ort secondly, one can show, by inspecting the thermodynamic Unp quantitiesofthesystem,thattherenormalizingterm,(cid:1)2c/d~,in 0 9 AM. ercial 3. Fciogu.n2terRioensc-aolneldydmeondseitlyapsraoffiulensctoiofnmouflttihvealreenstccaoleudnnteorrimonaslpwoitshitiinonth,e~z eeqnntro(p3i0c)coinndtreiebdutcioonmse.s from both electrostatic energy and 1:1mm ¼ z/m, between two randomly charged surfaces located at inter- 2:1Co surface separation d~ ¼ d/m ¼ 4. Different curves correspond to B. Distributionofcounterions:saltscreeningandimage 23 1Non differentvaluesofthedisordercouplingparameterasshownonthe chargeeffects 20n- graph. 3/3/utio Inthenextstep,weassumethat,inadditiontothemultivalent ded on s Attrib The accumulation of counterions in the vicinity of the csaolutnotferbiuolnksctohnacteanrteraitniotnrocd0u,ctehdeitohnroicugmhixatunreasaylmsomceotnritcaiqns:1a ownloaommon csthaatregeodf lboowuenrdtahreiremsafulr‘tdhiseormrdoerre’,dsirnivcees, tahseosnyestceamn tsohwoawr,dtshae mDeobnyoevsaclreenetnsianlgtpoafrbaumlketceorniscekn¼tr(a4tpiolnBnnb0).1/A2swnitohtendb¼be2fno0re+,qthc0e. Article. Published on 23 February 2015. DThis article is licensed under a Creative C let‘o(tcgqtoasrhhoxenuaetrteennteedneereesnrsemraearnlrcraasqtneeahayttfutdllciepe.ioe’o-sde(fnnd5msqrodaat6aciuasflpigeesoteiafeenolronnri,ondrcterttydfwhierrdt7eoortehe3htrppwdih.eycyoa()iTenhtnfsohdhcotdfiadeiintsstsnhmmih-osatdboeerohsulrnedsreilfhcsoidetvrrcoyiaeromevaasrvsmraltrsieateleoohedlfmsttr)urnhhepewr,rteecocecmoahncedinsoneasdoidffyunradisggnisneewytmuesgrrntehrogeemiaanncryindmctiiotiiioahoessnrinttthxnceeo-rspadaaiediwnlbrlslidlieasituyznerosertatochdmsnrirtrdiodetsieoeroonuefaonrni.rc,aspnee6iseyntdo4wssor;mfgtihfwcanatattoihbsisahhctsrliihnhaeeeeecs Ftio((owstn21rhuffoii26etcrrmmhI))fan–nadtalui(huaclnet1tyleeelhnt9dptsihi(es)vetvbb.(oiiaasaatmym¼lykelbeemeesnopanNettgtarbthnoek)caeeccnoiaienosnuebnlmeugoognldsan,ufuatcietssawlmskelru,reeriedipsroio.fooieeanarfsln.rlesc,titsmdsaseho3ccnpeeaccsacaauhnh¼alesberaposbdvlfr3pwuereegmromswteiocmonaiapdeatnalhrFicetlsdiniluhaaogtoitlcatrh.oaehnhdt3enta-eeeatmsotxrhbd;.f,ptueonThftrtnlrhohhesekootseeyeemsstsvddotlitaaaoweeenellbnmnnsuoqisocssesnbiiafitttbocrsh(yryo02euea)dpp1hmn.tsrri)adeehTooavelmiehienqnorllcinidgeeesr-- ccess disoTrhdeerreedsccaoluednteinritoenra-ocntiloynmpordeesls)u.re acting on each of the bneahmaevliyo,rthisesdauletstcoretehneiningteeffrpelcatyanbdettwheee“nsatlwtoimdaigstei”necfftefcatc.tTorhse, n A surfaces,P~ ¼bP/(2p‘ s2),canbeobtainedas56 former dominates at intermediate to large distances from the e B p surfaces that are comparable to or larger than the Debye O P~¼(cid:1)1þ2ð1(cid:1)~ cÞ: (30) screening length ~k(cid:1)1, while the latter dominates at small to d intermediate distances from the surfaces, causing a partial which, by setting c ¼ 0, reduces to the standard SC pressure depletionofmultivalentcounterionsfromtheproximityofthe betweentwonon-disorderedlike-chargedsurfaces14 surfaceboundaries.Thesaltimageeffectisgeneratedbecause of the inhomogeneous distribution of salt ions that are not 2 P~0¼(cid:1)1þ ~: (31) allowedtopermeateintothewallregions(i.e.,|~z|>d~/2),leading d in turn to a discontinuous change in the polarization of the medium at the interfacial boundaries, with the slit region The attractive (electrostatic) and repulsive (entropic) terms having a larger polarizability response than the slab region. inthepressuregiverisetoanequilibriumbound-statesepara- Thisgivesrisetorepulsive“saltimage”effectsthatshowsome tion of d~ ¼ 2 between two identical, uniformly charged qualitativesimilaritiestothe“dielectricimage”effects. * surfaces.5,6,14–16 As is clear from eqn (30), the surface charge When the bounding surfaces carry a nite degree of disorder gives an additive attractive contribution to the total quenched charge randomness (c > 0), the multivalent coun- interactionpressure,whichrenormalizestheentropictermand terions exhibit a strong attraction towards them and, again, leadstoamorecloselypackedboundstatewiththeequilibrium generate a singular density prole with a diverging contact inter-surfaceseparationd~ ¼2(1(cid:1)c).Thisseparationtendsto value(dashedcurvesinFig.3a).Infact,thecounteriondensity * zeroforc/1(cid:1),beyondwhichthetwosurfacescollapseintoa prole exhibits the same algebraic singularity on approach to primary minimum. This is because the entropic contribution thesurfacesasinthecounterion-onlycase,eqn(28).64Thus,at (secondtermineqn(30))changessignatc¼1and,hence,the smalldistancesfromthesurfaces,thedisorder-inducedeffects pressurebecomesattractiveatallseparations(anddivergesfor overcomebothsaltimageandsaltscreeningeffects. d~/0)intheregimec>1. Thesefeatureschangequalitativelywhenthesystemisdie- lectrically inhomogeneous, exhibiting a nite dielectric Thisjournalis©TheRoyalSocietyofChemistry2015 SoftMatter,2015,11,3441–3459 | 3447 View Article Online SoftMatter Paper e. c n e c Li d e ort p n U 0 M. al 3. Aci 19 mer Fig.3 Rescaleddensityprofilesofdressedmultivalentcounterionsasafunctionoftherescalednormalposition,~z,betweentherandomly 23 12:11:NonCom locehncattrrhgiceeadgllyrianipnnhhesor.ms(uco)rfgiasecnteheseoousfasmtswyeostaessme(mbs)i(-Dbinu¼fitnw0it.ie9th5s)filaaxbtesfidxpcelad¼cpe2adraaanmtdreevtseacrrayvlinealdguesslseap~kba¼trha0tici.o3knnaedn~sds¼Xb~1¼¼05i5n0,1(aa0n),dd1i5vealaernicodturiNscad.lilsyohrdoemrocgoeunpelionugsp(aDra¼me0t)earsndas(bsh)odwien- 20n- 3/3/utio ded on s Attrib discontinuity at the interfacial boundaries at z ¼ (cid:6)d/2. In populatedregionsintheslit.(Suchbimodalproleshavealso oaon Fig. 3b, we show the counterion density proles for D ¼ 0.95 beenfoundforthecounteriondensitybetweenheterogeneous nlm wm (corresponding to the dielectric discontinuity at the water/ butregularlypatterned,planarchargedsurfaces84andalsofor oo d on 23 February 2015. Densed under a Creative C hddnbsouryiiyeeffrdaalfeerreaborncctescthheenra.aeintrcTnbcsihvceoumaeenroldsafufeagbecpesfoseeeuursaaerontfkpwfuadsuircattelehhrsasyietcovahwnaradaensinitrsiqhlgsoeiueharn3adidtmdnleeiitgtrrsoa¼moctcarioeovd8zdueu0eoinlprany,talteeisenanriolmdigtofdhnici3plosopataudmrar¼geniaphnnmcls2eettie)hthtetyfeeaer,dnropfd.emdorpielSsllsaotoeerertwoanfdieoneccewnhdger tutllmdaeheninrdsuegitglftaetotoinhmrviamcn.aoepTltelenphynbroei-ctesasmhturkwcearaiorfenrtaugedscennudedotffieeftsnphrmecislpeoiaioeatnnprnyrspaaetrlhtayoickosoafluslnano,rrsgfpgdaiabeoczcselpadey,lcsieqsoc.la8oehum5scr)aadtpnaTnreanoghtrrileeeyvasitdaenneedrwaithalhicobnutehhgycmdaetoipisdhnsfseotesrrtaishnbrrcbeeeuirnleetae‘tigeotwxonirpnvediteenehoeclngeyrf- s Article. Publishe This article is lic gabgimteeutnnlrakaeegcrreraateittneeesffegsdreavlbcaotelrsiacgrraecguiraensnrtdeoneb(unutehmsniedltbiiekeesseslrci,ttor.hiefbseTmephsdeueaclliittinainvilmltatyeelrearafngmatetcsticeahoffoleufedncppetteesopa)riliknetothtni-reolesinkgdfeiriozeoonlimemnsc,eattrhbgiieecys cp(ssfhioaonnorrgawtl~kiment-¼uehhtouee0umr.r’3sep,iscnud~hplratt¼hosnego8lebepathantaotaidnsaaeeDddttho¼rfrauoen0brss.lh9teihot5-ihel)od,unttmhvhcaripoelsusnoqhetnueooexal.fdtn.IctnvAi*atsFylxuissgeeh.e0co4n.w*b38saian5snaaFfdsrihofgcuma,.nrw4pcaae-, ces charges (especially for large D x 1);36 these images repel the tionofthedielectricdiscontinuityparameter,D(atxedd~¼5), n Ac counterions with a singular image potential (second term in and as a function of the rescaled inter-surface distance, d~ (at pe eqn.(13)and(21))thatbehavesapproximatelyastherst-image xed D ¼ 0.95), respectively. The region below (above) the O interaction potential bu x XD/4(d~/2 (cid:6)~z) at small distances curvesinthesegurescorrespondstotheparametervaluesfor im from the boundaries, thus overcoming the logarithmic, whichthedensityproleisuni-(bi-)modal.AsseeninFig.4b,at disorder-inducedattractionexperiencedbythecounterions. larger values of the dielectric discontinuity or at larger salt Weshouldalsonotethatthenitenessoftheslabthickness screening parameters, a larger disorder coupling parameter hastypicallyonlyasmalleffectonthecounteriondistribution, (disorder variance) is required in order to counteract the especiallywhenitiscomparabletoorlargerthanthescreening counterion-imagerepulsionsfromtheboundariesandcreatea length, kb T 1, which is in fact oen the case in realistic bimodalstructure.Thesameistrueforasystemwithasmaller systems. For instance, in Fig. 3c, we show the results for the inter-surfaceseparation,seeFig.4c. sameparametersasinFig.3bbutwithc¼2anddifferentslab Thesaltscreeninghasareverseeffectatsmallorlargeinter- thicknessesintherangeb~$5(whichcoverstherangeb>1nm surface separations: whereas at small separations it increases inactualunits,seetheDiscussion).Thedensityofcounterions thevaluesofc ,atlargeseparationsitdecreasesthem.Another * in the slit is slightly increased but saturates quickly when the pointtobenotedhereisthat,fortheparametervaluesusedin slab thickness is increased to innity. The smaller counterion Fig.4bandc,thereisaplateau-likeregionwithc ¼0,where * densityfoundinthecaseofthinnerslabsisduetothefactthat thedensityproleisbimodalforanyvalueofc. the overall surface attraction experienced by counterions becomessmallerforsmallerslabthicknessesand,atthesame C. Interactionpressure time, the salt ions in the outer region behind the slabs (see Fig.1)alsocontributemorestronglytothescreeningeffects. In the most general case, where the system is immersed in an An interesting effect seen in the above results is that the asymmetricelectrolytebath,theinteractionpressure(equivalent competition between disorder-induced attraction and image totheosmoticordisjoiningpressure)actingontheslabsfollows repulsion leads to a highly pronounced bimodal prole with fromthedifferenceintheslitpressureandthebulk(electrolyte) two humps that correspond to two distinct counterion- pressure, i.e., P ¼ P (cid:1) P . The slit pressure is obtained by b S 3448 | SoftMatter,2015,11,3441–3459 Thisjournalis©TheRoyalSocietyofChemistry2015 View Article Online Paper SoftMatter e. c n e c Li d e ort p n U 0 M. al 3. Aci 19 mer Fig.4 (a)Rescaleddistancebetweenthepeaks(humps)inthedensityprofileofmultivalentcounterionsasafunctionofthedisordercoupling 12:11:nCom bpiamraomdeatlesrh,acp,ef,oars~ka¼fu0n.c3t,iod~n¼o8ftahneddDiel¼ec0tr.i9c5d.i(sbc)oTnhtienuthitryepshaoraldmveatelure,Dc,*a,twfihxeerded~th¼e5coaunndtedriffioenrednetnvsaitlyuepsroofifl~keacshsahnogwesnforonmthaeugnraimpho.d(acl)tTohea 23 No thresholdvaluec asafunctionoftherescaledinter-surfacedistance,d~,atfixedD¼0.95anddifferentvaluesof~k.In(b)and(c),theregionbelow 20n- (above)thecurve*scorrespondtotheparametervaluesforwhichthedensityprofileisuni-(bi-)modal.Inallthesecases,theslabsaresemi- 3/3/utio infinite. d on Attrib des an oo wnlmm differentiatingthefreeenergyexpression(23)withrespecttothe whereQ~¼Qmandg~¼gm.Thiscontributioncanbeattractiveor DoCo inter-surface separation as P ¼ (cid:1)vF/(Svd), where all other repulsive and will be non-vanishing only in inhomogeneous uary 2015. a Creative (tpnhabera+mmco0en)tkeoBrvTsaalwerinetthkienopbnts¼ax2sendd0,ea+nnqdecS0dthbebeebifnuoglrket.hpIertebssushulokruecldoisnbgceievnnetnortabetdyioPntbhoa¼tf tsmwysootgeecmnonseotwruiibstuhdtiiasotnrisbnuittoteiotdnhieeolfeincsttaerlirtcaicodtniisoscno(inp.etr.ie,nswushiuteryenawDnidsl/lsobre0a)np.rTeinhsheensoet- d on 23 Febrensed under ctmhouenltstriliivbtaupletrineotsn-siuofnrreofmorebettaheineneeordgsmyfrwootimtichtprheresepdsseiffuctreetroeondftidmaotoieonsnonvooaftltcehonentdtiaoriennssstheinde raengaTalryhdzeelecdsosinntordifebtutahtiileofnomsrPs~ueclmtaivnia-dilneP~nmtnointce,oousnlnatbtehsreiionontrhse;ef.rt5hh7aeynandh,dar5ev9pe–re6bs3ee.ennt cess Article. Publishe This article is lic td(2hepenW‘ssBiletisty2,d)oP,efmicnmoontmoo,nwpiotohsvPs~iacdelh¼iefftnhcPet~aersnieorn+bnetsesP~cc.c3dao6ailmselc+dpuolPi~annctete+endrtaPis~ncmattiosoenrn,mpsroefsstuhreem, P~id-¼pl(ab3nP2e)/ sfotioohtfrnlealFsotihoigwaneshnsamtdlfelfooyffrmrto,eiwmcoP~cantmpriovdotrevhnelayesilsssbeiutnnychrtgaerirllesecdascu-cloptlatmaaeilrotirpntemniodgcsnl,etfierhrnenoeismtnepsptqeaetfncrrhrtaaoiecm(vm2teci3elooyt)mnne.rwPt~usaecilctntiihtnisev-vargeu˜agliqel(vy~uznne,)ent(u˜2otic(h1nb~zo))etu.,taoenirrantemneemrdds- c A in terms of the total mid-plane density of monovalent ions, pen where which can be estimated here through the relationship n(z) ¼ O (cid:10) (cid:11) P~s¼csch2 ~k2d~ ; (33) iln+exrepf[.(cid:1)3b6u,(zw)]h|qe¼r1e+l+l(cid:1)¼expn[0(cid:1)abnud(z)l]|(cid:1)q¼¼(cid:1)1na0s+disqccu0sasreedtihnedbetualikl concentrations of monovalent cations and anions, respec- (cid:4) (cid:5) P~dis ¼(cid:1)cvf~~k;d~~;D ; (34) tdievelnye;dthaesn˜r(e0s)c¼alend(~zm¼id0)-p/nla.ne density in eqn (36) is then vd b " # ð P~c ¼c~4c2 vvd~ (cid:1)d~=d~=22dz~e(cid:1)u~ðz~Þ(cid:1)1 ; (35) DW.e Inrstetrcaoctnisoindeorftnhoen-idnitseorradcetiroendspurerfsascuerse between two non- P~mon ¼q22~k2(cid:4)n~ð0Þ(cid:1)1(cid:5): (36) dmisuoltridvearleendt-i(ounnitfohremorlyy. Tchhaerginedte)rascutirofancepsrewssiuthreinactthinegdornessthede slabsinthiscasefollowsfromeqn(32)–(36)bynotingthatinall theexpressionsinvolvedweneedtosetc¼0;hence,inparticular Thersttermineqn(32),P~s,followsfromthersttermin wehaveP~dis¼0.Weshallprimarilyfocusonthecaseofsemi- eqn(23)andrepresentstherepulsivepressureduetothemean inniteslabs(b¼N)andxtheelectrostaticcouplingparameter charges on the inner surfaces of the slabs. The second term, at X ¼ 50, which can be achieved with tetravalent counterions P~dis, gives the contribution from the surface charge disorder (q¼ 4)andthe meansurface chargedensitys¼ 0.24nm(cid:1)2in (second term in eqn (23)) with ~f(~k, d~, D) being dened using water(3 ¼80)andatroomtemperatureT¼293K(seeTable1). m eqn(24)as Unless otherwise specied, we take D ¼ 0.95, which is appro- ð f~(cid:4)~k;d~;D(cid:5)h 0NQ~dQ~ g~D(cid:4)esð21d~g~þ(cid:1)DDsÞs22(cid:5); (37) priaTtheeforerswualttserf/ohrytdhreorceasrcbaolnedinintetrefraaccetsio.npressureareshownin Fig.5aasafunctionoftherescaledinter-surfaceseparationfor Thisjournalis©TheRoyalSocietyofChemistry2015 SoftMatter,2015,11,3441–3459 | 3449 View Article Online SoftMatter Paper afewdifferentvaluesoftherescaledscreeningparameter,i.e.,~k because of the contributions P~ and P~ as discussed above s mon ¼ 0.25, 0.27, 0.28, 0.29, 0.30, and c~ ¼ 0.15 (in actual units, (see Fig. 6b and also Fig. 5b and c). However, the multivalent c ~ theseparametervaluescanbeobtained,forinstance,bytaking counterions pressure component, P , again shows a non- c saltbulkconcentrationsn x105,123,133,143,153mMandc monotonicbehaviorwithbothattractiveandrepulsiveregions ce. x 2.5 mM). At sufficientl0y large ~k (e.g., high monovalent sal0t (Fig.6b). n e ~ Lic concentration), the pressure is repulsive and decays mono- The non-monotonic behavior of Pc can be understood by d tonically with the distance. In this regime, the salt screening inspecting the average number of multivalent counterions in nporte effectsaredominantandtheSCeffectsduetothemultivalent theslitbetweentheslabs,N(cid:1) ¼Sðd=2 dzcðzÞ,which,inrescaled U counterionsarestronglysuppressed;therepulsivepressureisin 12:11:19 AM. nCommercial 3.0 aflfaarnotcdtmtAesrdthtec~khetoeeinorsptmsrrdmieibensocusetrtudieicroaemnspecrabdeoies,mnsitlnuphygroeebntypheorneftehtsmlseasruionsgnrueeoFrrvfidoagaec.flvee5ten–hblstoe.upirotswfnaaosc,en(aP~orsmenpco-namu)nlsowibnoieotnhtso(etnP~heisnec) unitsandperunitarNS(cid:1)~ea¼,is8c~pgcXi2veðn(cid:1)d~=d~b=2(cid:1)y2d=d2z~c~(cid:4)z~(cid:5): (38) oaded on 3/3/2023 ons Attribution-No fbiDanuleeltrhybetharyt-veeusiruros,nrrcifsnrawedcieineintchtaiosnteaiganpgaplnerraneaogtgsniattoorhtnouivns(neFgciweggadil.totth5rblaaioan)ccl.taiTmalvhemirinpsaiirnnmelogismucesamuulcrmeomamisnianpd~ktiaumiricnsauetbmdedlreebmceertvetoeewdaniestatheeutndee- cadoliorrenTrcehgtsilwpysoirqtnehudlaaisttnsettdocitoyttrohrieesvsNs(cid:2)rpeh/odvond~wddanainssihgonenpdFreiecgcsu.asrun7vresfeoeicreno~kbmFy¼ipgco.o0n5m.2ea7pn(atnarP~onicntdetghc~teahcqta¼nitnP~(0f2c.a21ci)5st, wnlmm the slabs. For ~k ¼ 0.27 (red dashed curve), the minimum (35) and (38)). At large separations and upon decreasing the 3 February 2015. Dounder a Creative Co aratPhettxttperrlaaoc(cid:1)ccthttt2iieovv8dieecbepaaprsroer)fse.tsshFtushoeurererre~kieas¼dciP~tsu0sxa.o2all5ip(cid:1)pdp(a7brr5colaaux(mcorikmvree,tsaPeotirelnxildvyaF(cid:1)cliuuP~g7re.8vs0xe5mcbin)a,e(cid:1)rFn)t.i2thgiN.eo.7on5tmae(eodwitrnhh,aiamibctwohutivhtmeihes, iitsasnnhuetttpertrefahabrarce-cuasteuslitkvilroiecftsnao(oincsrlereiuisegntdliaacoditstrnieietvoc,aaenrnws)eecihande(sia,tcedtehtdtruhr-iaesesfcuutntcorriafuotaauhnmcsel)eaebr,drpetghrrtbeeahroystesf,uaupmnnirnteuiaunmcklttcoeuibrmveroeanafprls,etoenhonedtefnesccnhmeootauiuuP~onnnlcnct.ttieseevAsrrafsiirloooettnhhnnm–eest d on 2ensed nlikeetactthraarcgteiodn. hTehriesaipspebaercsaduessepiotef tthheefaScCttheafftetchtse,suwrhfaicchesaarree counterions in the slit reaches a maximum value. The multi- Article. PublisheThis article is lic ptFainirogodn.d5eubncce)etcedaornmbtdhyersetohxquheugilbhietiaettdshliaeanrgpgnersoeunsars-tfmuasrcomeen–acocoltolomusnnpcirtcoeenrebieneonhinntagcPv~oicop.rrraTerthlahaimtasitoectnwoesner5st–sr7,i(h1bs4ae–u1le6l- vsttchhtaoreelmoennsspllgtoiittlnycwdeorenhuectepnrndeetelualtrseehiedoetson;bssmutyhruatfehaltytceiaevisrasrmeliceamoenlvlmateegcrneeotuciucnlnahottlesaeleryrr-gistcoeuoosnrmcsfaaotpncnhldeetuatstecshcltey.ehpiTaearhnjrenaegctuetipmeosrdnsebissgfesrrnuoaimrraneet s consider later in more detail. The non-monotonic behavior of (cid:2) pen Acces tsnhteeenmtnss,edwtiirptehrcetP~slysubfrreeoimnwgittthhheetimhnetoesritpnletaesyrs-ebsnuettriwfaaleceoennseie.tspadriaffteiorennt(Fciogm. p5oa)- cttho0keBthlToe)cwabthuioelknnwpd~rh/eesrseu0Nr(etrheP~iasccl/himesi(cid:1)tainc~mgc2av/x4aimlu(ouerm,isinannoadtc,dteuivsaeclneurtnuniaibtllslye,,aPtetcnt/hdes O c rangeofscalesshowninFig.7). SimilarbehaviortothoseshowninFig.5acanbeseenupon We should also note that the intermediate attractive-pres- increasing the rescaled bulk concentration of multivalent counterions, c~ (Fig. 6), and upon decreasing the dielectric sure regime seen in Fig. 5a and 6a is followed by a weakly c repulsiveregime(hump)atlargerseparationsbutthereisavery discontinuity parameter, D (not shown) with the minimum shallow local minimum at large separations that gives the attractivepressureturningouttobequitesensitivetotheexact values of these parameters. Fig. 6a shows the results for c~ ¼ pressurecurvesaweaklyattractivelongtail.Thisisshownina c 0.09,0.11,0.13,0.15and~k¼0.27(corresponding,forinstance, close-upviewintheinsetofFig.6aforthecurvesthatappearin to choosing the bulk concentrations as c x 0.9, 1.3, 1.9, 2.5 the main set. Comparing the different pressure components 0 mMwithn x127,126,125,123mM,respectively).Thepres- aroundthislarge-separationminimum(Fig.6c)showsthatthe 0 contribution from the surface–surface repulsion (P~ ) nearly sure still remains strongly repulsive at very small separations s Table1 Afewtypicalexamplesfortheactualvaluesofthebulkconcentrationsn andc ,whichcancorrespondtothetypicalvalueswehavechosen 0 0 fortherescaledparameters~kandc~ .Here,wehavefixedtheotherparametervaluesasq¼4(tetravalentcounterions),l ¼0.71nm(correspondingto c B waterwith3 ¼80atroomtemperature,T¼293K)andsurfacechargedensitys¼0.24nm(cid:1)2,whichgivem¼0.23nmandX¼50.Wealsoshowthe m actualvaluesofthedisordervarianceg,whichcancorrespondtoafewtypicalvaluesofthedisordercouplingparameterc(seethetextfordefinitions) ~k¼0.2 0.25 0.3 0.4 c g(nm(cid:1)2) n ¼68mM 108mM 156mM 279mM c ¼1.1mM c~ ¼0.1 0.5 0.01 0 0 c 65mM 105mM 153mM 277mM 2.5mM 0.15 1.0 0.02 62mM 101mM 150mM 273mM 4.4mM 0.20 2.0 0.04 57mM 96mM 145mM 268mM 6.9mM 0.25 4.0 0.08 3450 | SoftMatter,2015,11,3441–3459 Thisjournalis©TheRoyalSocietyofChemistry2015

Description:
solution subphase and the macromolecular surface, there is no disorder-induced coupled, disordered systems, anti-fragile behavior is ubiquitous.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.