ebook img

Strategic Pricing and Resource Allocation: Framework and PDF

190 Pages·2012·1.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strategic Pricing and Resource Allocation: Framework and

UNIVERSITY OF CALIFORNIA LosAngeles Strategic Pricing and Resource Allocation: Framework and Applications Adissertationsubmittedinpartialsatisfaction oftherequirementsforthedegree DoctorofPhilosophyinElectricalEngineering by Shaolei Ren 2012 (cid:176)c Copyrightby ShaoleiRen 2012 ABSTRACT OF THE DISSERTATION Strategic Pricing and Resource Allocation: Framework and Applications by Shaolei Ren DoctorofPhilosophyinElectricalEngineering UniversityofCalifornia,LosAngeles,2012 ProfessorMihaelavanderSchaar,Chair Enabledbyubiquitousbroadbandconnectivityandseamlesswirelessconnections, wehavewitnessedinthepastfewyearstheemergenceofaplethoraofwirelessappli- cations,rangingfromdatacommunicationsandsocialnetworkingtothemorerecently wireless cloud computing. The growing tension between the exploding demand for such wireless applications and the increasingly scarce network resources (e.g., spec- trum, power) has urged a rethinking of the service providers’ pricing strategies and network resource management techniques to cope with potential threats of quality-of- service degradation and revenue decreases. Specifically, it has become of paramount importance for service providers to strategically redesign their pricing policies and to understandhowvariouspricingpolicieswillaffecttheservicedemand,competitionin themarket,aswellasthenetworkresourcemanagement. In this dissertation, I propose a novel framework to optimize a service provider’s pricing policy as well as its network resource allocation decision for profit maximiza- tion, in the presence of self-interested participating users that strategically respond to the charged price to maximize their own benefits. Applicable to both static and stochastic environments, the proposed framework explicitly takes into account user ii heterogeneity, which is observed in a wide range of applications. Based on the frame- work, I investigate the problem of optimizing pricing and resource allocation for the service provider’s profit maximization in various contexts, including cooperative re- lay networks, communications markets, online user-generated content platforms, and mobilecloudcomputingsystems. iii ThedissertationofShaoleiRenisapproved. AliH.Sayed JasonL.Speyer WilliamZame PhilipA.Chou MihaelavanderSchaar,CommitteeChair UniversityofCalifornia,LosAngeles 2012 iv Tomywife. v TABLE OF CONTENTS 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 KeyChallenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ContributionsoftheDissertation . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Chapter 2: Pricing and Power Control in Wireless Relay Net- works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Chapter3: PricinginWirelessCommunicationsMarkets . . . 5 1.3.3 Chapter4: PricinginOnlineUser-GeneratedContentPlatforms 6 1.3.4 Chapter5: PricingandSchedulinginWirelessCloudComputing 6 1.3.5 Chapter6: Conclusion . . . . . . . . . . . . . . . . . . . . . 7 2 PricingandDistributedPowerControlinWirelessRelayNetworks. . . 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 RelatedWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 NetworkModel . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . 16 2.4 User-CentricOptimizationandPricing . . . . . . . . . . . . . . . . . 18 2.4.1 DistributedPowerAllocation . . . . . . . . . . . . . . . . . . 18 2.4.2 UniformPricingWithIncompleteInformation . . . . . . . . 23 2.4.3 DifferentiatedPricingWithCompleteInformation . . . . . . 30 2.4.4 SystemUtilityMaximization . . . . . . . . . . . . . . . . . . 33 vi 2.5 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.1 HomogeneousNetworkTopology . . . . . . . . . . . . . . . 37 2.5.2 HeterogeneousNetworkTopology . . . . . . . . . . . . . . . 41 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 DataDemandDynamicsinWirelessCommunicationsMarkets . . . . . 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 RelatedWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 WSPModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 UserModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 WirelessCommunicationsMarket: SingleDataPlan . . . . . . . . . 56 3.4.1 Users’SubscriptionDecisions . . . . . . . . . . . . . . . . . 56 3.4.2 WSP’sDataPlanDecision . . . . . . . . . . . . . . . . . . . 66 3.4.3 WSP’sCapacityDecision . . . . . . . . . . . . . . . . . . . 68 3.5 WirelessCommunicationsMarket: TwoDataPlans . . . . . . . . . . 69 3.5.1 Users’SubscriptionDecisions . . . . . . . . . . . . . . . . . 69 3.5.2 WSP’sDataPlanDecision . . . . . . . . . . . . . . . . . . . 77 3.5.3 WSP’sCapacityDecision . . . . . . . . . . . . . . . . . . . 78 3.6 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.6.1 Singledataplan . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.6.2 Twodataplans . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 vii 4 MaximizingProfitonUser-GeneratedContentPlatforms . . . . . . . . 88 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 RelatedWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.1 Intermediary . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.2 ContentProducers . . . . . . . . . . . . . . . . . . . . . . . 94 4.3.3 ContentViewers . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4 ProfitMaximizationonContentPlatforms . . . . . . . . . . . . . . . 100 4.4.1 OptimalContentViewing . . . . . . . . . . . . . . . . . . . 101 4.4.2 EquilibriumContentProduction . . . . . . . . . . . . . . . . 101 4.4.3 OptimalPrice . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.5 ExtensiontoHeterogeneousProductionCosts . . . . . . . . . . . . . 112 4.5.1 OptimalContentViewing . . . . . . . . . . . . . . . . . . . 113 4.5.2 EquilibriumContentProduction . . . . . . . . . . . . . . . . 113 4.5.3 OptimalPrice . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5 DynamicSchedulingandPricinginWirelessCloudComputing . . . . . 121 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2 RelatedWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3.1 ServiceProvider . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3.2 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.3 Extensiontomultipleserviceclasses . . . . . . . . . . . . . . 137 viii 5.4 DynamicPricingandCapacityProvisioning . . . . . . . . . . . . . . 138 5.4.1 Offlineproblemformulation . . . . . . . . . . . . . . . . . . 139 5.4.2 OnlineAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . 140 5.4.3 PerformanceAnalysis . . . . . . . . . . . . . . . . . . . . . 143 5.5 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.5.2 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . 154 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 ix

Description:
In this dissertation, I propose a novel framework to optimize a service . 4.2 Related Works . Notable examples include AT&T Cloud, Google Android, wireless subscribers have heterogeneous data service demand in . petition among the users within the framework of non-cooperative game theory
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.