ebook img

Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation PDF

264 Pages·2013·2.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation

Stochastic Modelling StochasticMechanics RandomMedia and Applied Probability SignalProcessing andImageSynthesis (Formerly: MathematicalEconomicsandFinance ApplicationsofMathematics) StochasticOptimization StochasticControl 68 StochasticModelsinLifeSciences Editedby P.W. Glynn Y.LeJan AdvisoryBoard M. Hairer I.Karatzas F.P. Kelly A.Kyprianou B.Øksendal G.Papanicolaou E.Pardoux E.Perkins H.M.Soner Forfurthervolumes: www.springer.com/series/602 Carl Graham (cid:2) Denis Talay Stochastic Simulation and Monte Carlo Methods Mathematical Foundations of Stochastic Simulation CarlGraham DenisTalay CentredeMathématiquesAppliquées INRIA ÉcolePolytechnique,CNRS SophiaAntipolis,France Palaiseau,France ISSN0172-4568 StochasticModellingandAppliedProbability ISBN978-3-642-39362-4 ISBN978-3-642-39363-1(eBook) DOI10.1007/978-3-642-39363-1 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013945076 MathematicsSubjectClassification: 60H10,65U05,65C05,60J30,60E7,65R20 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Theextraordinaryincreaseofcomputercapacitynowencouragesphysicists,biolo- gists, economists, and engineers to model and simulate numerically tremendously complex phenomena, in order to answer scientific questions, industrial needs, and societalrequirementsforriskevaluationandcontrol.Therefore,expertsinvarious fields aim to solve incredibly complex high dimensional systems of partial differ- ential equations (PDE), couplings of local stochastic dynamics and deterministic macroscopicequations,etc. Stochasticapproachesappeartobeuseful,andsometimesmandatory,inthefol- lowingtwocontexts.First,onecannotexpectthatverycomplexphenomenaleadto perfectlycalibratedmathematicalmodels,oreventoperfectmathematicalmodels, so that uncertainties or stochastic components are involved in the equations. Sec- ond, stochastic numerical methods allow one to solve deterministic problems, of whichthehighdimensionorsingularitiesrenderclassicaldeterministicmethodsof resolution intractable or inaccurate, provided that the solutions can be represented intermsofprobabilitydistributionsofrandomvariablesorstochasticprocesses. ThecombinationofstochasticanalysisandPDEtheoryarenecessaryto: • obtainstochasticrepresentationsofsolutionsofdeterministicPDE, • constructeffectivestochasticnumericalmethods, • obtainpreciseerrorestimatesintermsofthenumericalparametersofthesemeth- ods,undertheconstraintthattheytakeintoaccountthecriticalsituationswhere thestochasticnumericalmethodsareusedandtheobjectivesoftheirusers. This monograph aims to introduce the reader to these difficult issues in a self- contained way. We particularly emphasize the essential role played by martingale theoryinallthetheoreticalandnumericalaspectsoftheseissues.Wealsohavede- votedasubstantialpartofthebooktotheconstructionofsimulationalgorithms:the readers who are mainly interested in numerical issues may skip the mathematical proofsandconcentrateonthealgorithmsandtheconvergencerateestimates. Compared to other textbooks, this monograph presents the specificity of devel- oping the mathematical tools which are necessary to construct effective stochastic v vi Preface simulationmethodsandobtainaccurateerrorestimates,andofreunitinginanon- classicalwayseveraladvancedtheoreticaltopics,someofwhichwenowlist. We focus on non-asymptotic error estimates for Monte Carlo methods, on the backwardmartingaletechniquetoprovetheStrongLawofLargeNumbers,andon elementarynotionsonlogarithmicSobolevinequalitiestoprovebasicconcentration inequalities.Weplacegreatemphasisonthepathwiseconstructionandsimulation ofPoissonprocesses,discretespaceMarkovprocesses,andsolutionsofItôstochas- ticdifferentialequations. We use the notions of infinitesimal generators and stochastic flows to estab- lishstochasticrepresentationsofparabolicpartialdifferentialequationsorintegro- differentialequations.Weintensivelyusethesestochasticrepresentationsofevolu- tion equations to prove optimal error estimates for stochastic simulation methods. AsexplainedinChap.1,stochasticnumericalmethodsareusedtocomputequan- tities expressedin terms of the probabilitydistributionof stochasticprocesses; we therefore essentially consider numerical errors in the weak sense rather than in an Lp-normorinapathwisesensewhichonlyprovidecrudeinformationontheaccu- racyofpracticalsimulations. Wepresentvariancereductiontechniquesinnontrivialsituations,whichleadsus touseoptimizedGirsanovtransformationsandtointroducethereadertostochastic optimizationprocedures. Forfurtherinformationonthecontentsofthefirsttwochapters,thereaderisad- visedtoconsultthehugeliteraturewhichconcernsCentralLimitTheorems,Edge- worthexpansions,LargeDeviationsPrinciples,concentrationinequalities,andsim- ulationalgorithmsforfinite-dimensionalrandomvariables.See,e.g.,Devroye[10], Feller[15,16],Petrov[43],Shiryayev[44],andreferencestherein. Thefirstbookonthediscretizationofstochasticdifferentialequationsisdueto Milstein [37]. Several other books have been published on this topic with a rather different point of view to ours: most of them focus on particular applications or variousdiscretizationmethodswhereas,asalreadyemphasized,weconcentrateon the mathematical methodologies which allow one to get sharp convergence rates. Therefore we encourage the reader to consult the selected references below, ref- erences therein, and other useful references, to get further algorithmic or applied informationonstochasticsimulations. Fortimedependentmodels,MonteCarlomethodsarederivedfromthesimula- tionofMarkovprocesses,possiblydiscretized.Inthiscontext,e.g.,Asmussenand Glynn [4] treat the mathematics of queueing theory and some related areas, with an emphasis on stationary regimes. Glasserman [20] focuses on numerical meth- ods for financial models. Kloeden and Platen [28] present an extended catalog of variantsoftheEulerandMilsteindiscretizationschemesforstochasticdifferential equations. Lapeyre, Pardoux and Sentis [32] present an overview of applications of Monte Carlo simulations of stochastic processes. Milstein and Tretyakov [38] notably study discretization methods for stochastic differential systems with sym- plectic structure, Hamiltonian systems, and small noise systems, layer simulation methodsandrandomwalksimulationsforstochasticsystemswithboundarycondi- tions.TheCIMEvolume[21]developedtheweakconvergenceofdiscretizedpro- Preface vii cesses,withastrongemphasisonstochasticinteractingparticlesystemsrelatedto non-linearpartialdifferentialequations. WeherehavenottackledsuchimportanttopicsasMalliavincalculustechniques togetoptimalconvergenceratesanddevelopvariancereductionmethods,longtime simulationsofergodicMarkovprocessesandthestochasticapproximationoftheir invariantprobabilitydistributions,approximationmethodsforreflectedandstopped diffusionprocesses,simulationofLévyprocessesanddiscretizationofLévydriven stochastic differential equations, quantization simulation techniques, or exact sim- ulationmethods.Thesesubjectsneedmathematicaltoolswhicharebeyondtheob- jectivesofthisfirstvolume,andwewilladdresstheminaforthcomingvolume. OurothervolumeswillconcernthestochasticsimulationmethodsforPartialDif- ferentialEquationswithnon-smoothcoefficientsandthestochasticparticlemethods fortheanalysisandthenumericalresolutionofnon-linearPartialDifferentialEqua- tions. We hope that Master or Ph.D. students with notions on stochastic calculus and researchers interested in the mathematical or numerical aspects of stochastic sim- ulations will find this series of monographs useful, in order to be introduced into some advanced topics in Probability theory, to improve the accuracy and the con- fidence intervals of their simulations, or to acquire some fundamental knowledge beforereadingadvancedresearchpapersonnumericalprobability. Palaiseau,France CarlGraham Sophia-Antipolis,France DenisTalay February2012 Acknowledgements We warmly thank Benjamin Jourdain for his very valuable comments on the first draftofthisbook,andheandCarolineHillairetforhavingtaughtitscontentswith usattheÉcolePolytechnique(Palaiseau,France). ix Contents PartI PrinciplesofMonteCarloMethods 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 WhyUseProbabilisticModelsandSimulations? . . . . . . . . . . 3 1.1.1 WhatAretheReasonsforProbabilisticModels? . . . . . . 4 1.1.2 WhatAretheObjectivesofRandomSimulations? . . . . . 6 1.2 OrganizationoftheMonograph . . . . . . . . . . . . . . . . . . . 9 2 StrongLawofLargeNumbersandMonteCarloMethods . . . . . . 13 2.1 StrongLawofLargeNumbers,ExamplesofMonteCarloMethods 13 2.1.1 StrongLawofLargeNumbers,AlmostSureConvergence . 13 2.1.2 Buffon’sNeedle . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 NeutronTransportSimulations . . . . . . . . . . . . . . . 15 2.1.4 StochasticNumericalMethodsforPartialDifferential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 SimulationAlgorithmsforSimpleProbabilityDistributions . . . . 18 2.2.1 UniformDistributions . . . . . . . . . . . . . . . . . . . . 19 2.2.2 DiscreteDistributions . . . . . . . . . . . . . . . . . . . . 20 2.2.3 GaussianDistributions . . . . . . . . . . . . . . . . . . . . 21 2.2.4 CumulativeDistributionFunctionInversion,Exponential Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 RejectionMethod . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Discrete-TimeMartingales,ProofoftheSLLN . . . . . . . . . . . 25 2.3.1 RemindersonConditionalExpectation . . . . . . . . . . . 25 2.3.2 MartingalesandSub-martingales,BackwardMartingales . 27 2.3.3 ProofoftheStrongLawofLargeNumbers . . . . . . . . . 30 2.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Non-asymptoticErrorEstimatesforMonteCarloMethods . . . . . 37 3.1 ConvergenceinLawandCharacteristicFunctions . . . . . . . . . 37 3.2 CentralLimitTheorem . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 AsymptoticConfidenceIntervals . . . . . . . . . . . . . . 41 3.3 Berry–Esseen’sTheorem . . . . . . . . . . . . . . . . . . . . . . 42 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.