Table Of ContentStochastic Modelling
StochasticMechanics
RandomMedia and Applied Probability
SignalProcessing
andImageSynthesis (Formerly:
MathematicalEconomicsandFinance ApplicationsofMathematics)
StochasticOptimization
StochasticControl 68
StochasticModelsinLifeSciences
Editedby P.W. Glynn
Y.LeJan
AdvisoryBoard M. Hairer
I.Karatzas
F.P. Kelly
A.Kyprianou
B.Øksendal
G.Papanicolaou
E.Pardoux
E.Perkins
H.M.Soner
Forfurthervolumes:
www.springer.com/series/602
Carl Graham (cid:2) Denis Talay
Stochastic
Simulation and
Monte Carlo
Methods
Mathematical Foundations
of Stochastic Simulation
CarlGraham DenisTalay
CentredeMathématiquesAppliquées INRIA
ÉcolePolytechnique,CNRS SophiaAntipolis,France
Palaiseau,France
ISSN0172-4568 StochasticModellingandAppliedProbability
ISBN978-3-642-39362-4 ISBN978-3-642-39363-1(eBook)
DOI10.1007/978-3-642-39363-1
SpringerHeidelbergNewYorkDordrechtLondon
LibraryofCongressControlNumber:2013945076
MathematicsSubjectClassification: 60H10,65U05,65C05,60J30,60E7,65R20
©Springer-VerlagBerlinHeidelberg2013
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations
areliabletoprosecutionundertherespectiveCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub-
lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany
errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect
tothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
Theextraordinaryincreaseofcomputercapacitynowencouragesphysicists,biolo-
gists, economists, and engineers to model and simulate numerically tremendously
complex phenomena, in order to answer scientific questions, industrial needs, and
societalrequirementsforriskevaluationandcontrol.Therefore,expertsinvarious
fields aim to solve incredibly complex high dimensional systems of partial differ-
ential equations (PDE), couplings of local stochastic dynamics and deterministic
macroscopicequations,etc.
Stochasticapproachesappeartobeuseful,andsometimesmandatory,inthefol-
lowingtwocontexts.First,onecannotexpectthatverycomplexphenomenaleadto
perfectlycalibratedmathematicalmodels,oreventoperfectmathematicalmodels,
so that uncertainties or stochastic components are involved in the equations. Sec-
ond, stochastic numerical methods allow one to solve deterministic problems, of
whichthehighdimensionorsingularitiesrenderclassicaldeterministicmethodsof
resolution intractable or inaccurate, provided that the solutions can be represented
intermsofprobabilitydistributionsofrandomvariablesorstochasticprocesses.
ThecombinationofstochasticanalysisandPDEtheoryarenecessaryto:
• obtainstochasticrepresentationsofsolutionsofdeterministicPDE,
• constructeffectivestochasticnumericalmethods,
• obtainpreciseerrorestimatesintermsofthenumericalparametersofthesemeth-
ods,undertheconstraintthattheytakeintoaccountthecriticalsituationswhere
thestochasticnumericalmethodsareusedandtheobjectivesoftheirusers.
This monograph aims to introduce the reader to these difficult issues in a self-
contained way. We particularly emphasize the essential role played by martingale
theoryinallthetheoreticalandnumericalaspectsoftheseissues.Wealsohavede-
votedasubstantialpartofthebooktotheconstructionofsimulationalgorithms:the
readers who are mainly interested in numerical issues may skip the mathematical
proofsandconcentrateonthealgorithmsandtheconvergencerateestimates.
Compared to other textbooks, this monograph presents the specificity of devel-
oping the mathematical tools which are necessary to construct effective stochastic
v
vi Preface
simulationmethodsandobtainaccurateerrorestimates,andofreunitinginanon-
classicalwayseveraladvancedtheoreticaltopics,someofwhichwenowlist.
We focus on non-asymptotic error estimates for Monte Carlo methods, on the
backwardmartingaletechniquetoprovetheStrongLawofLargeNumbers,andon
elementarynotionsonlogarithmicSobolevinequalitiestoprovebasicconcentration
inequalities.Weplacegreatemphasisonthepathwiseconstructionandsimulation
ofPoissonprocesses,discretespaceMarkovprocesses,andsolutionsofItôstochas-
ticdifferentialequations.
We use the notions of infinitesimal generators and stochastic flows to estab-
lishstochasticrepresentationsofparabolicpartialdifferentialequationsorintegro-
differentialequations.Weintensivelyusethesestochasticrepresentationsofevolu-
tion equations to prove optimal error estimates for stochastic simulation methods.
AsexplainedinChap.1,stochasticnumericalmethodsareusedtocomputequan-
tities expressedin terms of the probabilitydistributionof stochasticprocesses; we
therefore essentially consider numerical errors in the weak sense rather than in an
Lp-normorinapathwisesensewhichonlyprovidecrudeinformationontheaccu-
racyofpracticalsimulations.
Wepresentvariancereductiontechniquesinnontrivialsituations,whichleadsus
touseoptimizedGirsanovtransformationsandtointroducethereadertostochastic
optimizationprocedures.
Forfurtherinformationonthecontentsofthefirsttwochapters,thereaderisad-
visedtoconsultthehugeliteraturewhichconcernsCentralLimitTheorems,Edge-
worthexpansions,LargeDeviationsPrinciples,concentrationinequalities,andsim-
ulationalgorithmsforfinite-dimensionalrandomvariables.See,e.g.,Devroye[10],
Feller[15,16],Petrov[43],Shiryayev[44],andreferencestherein.
Thefirstbookonthediscretizationofstochasticdifferentialequationsisdueto
Milstein [37]. Several other books have been published on this topic with a rather
different point of view to ours: most of them focus on particular applications or
variousdiscretizationmethodswhereas,asalreadyemphasized,weconcentrateon
the mathematical methodologies which allow one to get sharp convergence rates.
Therefore we encourage the reader to consult the selected references below, ref-
erences therein, and other useful references, to get further algorithmic or applied
informationonstochasticsimulations.
Fortimedependentmodels,MonteCarlomethodsarederivedfromthesimula-
tionofMarkovprocesses,possiblydiscretized.Inthiscontext,e.g.,Asmussenand
Glynn [4] treat the mathematics of queueing theory and some related areas, with
an emphasis on stationary regimes. Glasserman [20] focuses on numerical meth-
ods for financial models. Kloeden and Platen [28] present an extended catalog of
variantsoftheEulerandMilsteindiscretizationschemesforstochasticdifferential
equations. Lapeyre, Pardoux and Sentis [32] present an overview of applications
of Monte Carlo simulations of stochastic processes. Milstein and Tretyakov [38]
notably study discretization methods for stochastic differential systems with sym-
plectic structure, Hamiltonian systems, and small noise systems, layer simulation
methodsandrandomwalksimulationsforstochasticsystemswithboundarycondi-
tions.TheCIMEvolume[21]developedtheweakconvergenceofdiscretizedpro-
Preface vii
cesses,withastrongemphasisonstochasticinteractingparticlesystemsrelatedto
non-linearpartialdifferentialequations.
WeherehavenottackledsuchimportanttopicsasMalliavincalculustechniques
togetoptimalconvergenceratesanddevelopvariancereductionmethods,longtime
simulationsofergodicMarkovprocessesandthestochasticapproximationoftheir
invariantprobabilitydistributions,approximationmethodsforreflectedandstopped
diffusionprocesses,simulationofLévyprocessesanddiscretizationofLévydriven
stochastic differential equations, quantization simulation techniques, or exact sim-
ulationmethods.Thesesubjectsneedmathematicaltoolswhicharebeyondtheob-
jectivesofthisfirstvolume,andwewilladdresstheminaforthcomingvolume.
OurothervolumeswillconcernthestochasticsimulationmethodsforPartialDif-
ferentialEquationswithnon-smoothcoefficientsandthestochasticparticlemethods
fortheanalysisandthenumericalresolutionofnon-linearPartialDifferentialEqua-
tions.
We hope that Master or Ph.D. students with notions on stochastic calculus and
researchers interested in the mathematical or numerical aspects of stochastic sim-
ulations will find this series of monographs useful, in order to be introduced into
some advanced topics in Probability theory, to improve the accuracy and the con-
fidence intervals of their simulations, or to acquire some fundamental knowledge
beforereadingadvancedresearchpapersonnumericalprobability.
Palaiseau,France CarlGraham
Sophia-Antipolis,France DenisTalay
February2012
Acknowledgements
We warmly thank Benjamin Jourdain for his very valuable comments on the first
draftofthisbook,andheandCarolineHillairetforhavingtaughtitscontentswith
usattheÉcolePolytechnique(Palaiseau,France).
ix
Contents
PartI PrinciplesofMonteCarloMethods
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 WhyUseProbabilisticModelsandSimulations? . . . . . . . . . . 3
1.1.1 WhatAretheReasonsforProbabilisticModels? . . . . . . 4
1.1.2 WhatAretheObjectivesofRandomSimulations? . . . . . 6
1.2 OrganizationoftheMonograph . . . . . . . . . . . . . . . . . . . 9
2 StrongLawofLargeNumbersandMonteCarloMethods . . . . . . 13
2.1 StrongLawofLargeNumbers,ExamplesofMonteCarloMethods 13
2.1.1 StrongLawofLargeNumbers,AlmostSureConvergence . 13
2.1.2 Buffon’sNeedle . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 NeutronTransportSimulations . . . . . . . . . . . . . . . 15
2.1.4 StochasticNumericalMethodsforPartialDifferential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 SimulationAlgorithmsforSimpleProbabilityDistributions . . . . 18
2.2.1 UniformDistributions . . . . . . . . . . . . . . . . . . . . 19
2.2.2 DiscreteDistributions . . . . . . . . . . . . . . . . . . . . 20
2.2.3 GaussianDistributions . . . . . . . . . . . . . . . . . . . . 21
2.2.4 CumulativeDistributionFunctionInversion,Exponential
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 RejectionMethod . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Discrete-TimeMartingales,ProofoftheSLLN . . . . . . . . . . . 25
2.3.1 RemindersonConditionalExpectation . . . . . . . . . . . 25
2.3.2 MartingalesandSub-martingales,BackwardMartingales . 27
2.3.3 ProofoftheStrongLawofLargeNumbers . . . . . . . . . 30
2.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Non-asymptoticErrorEstimatesforMonteCarloMethods . . . . . 37
3.1 ConvergenceinLawandCharacteristicFunctions . . . . . . . . . 37
3.2 CentralLimitTheorem . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 AsymptoticConfidenceIntervals . . . . . . . . . . . . . . 41
3.3 Berry–Esseen’sTheorem . . . . . . . . . . . . . . . . . . . . . . 42
xi