Stochastic PDEs and their numerical approximation Gabriel Lord Maxwell Institute, Heriot Watt University, Edinburgh [email protected], http://www.ma.hw.ac.uk/ gabriel ∼ ◮ Based on Introduction to Computational Stochastic Partial Differential Equations G. J. Lord, C. E. Powell, T. Shardlow CUP. To appear : 2014. Informal description of SPDEs and numerical approximation. a b 7 7 1 6 6 5 5 0.5 4 4 0 y 3 3 2 2 −0.5 1 1 −1 0 0 0 2 4 6 0 2 4 6 x x (a) Deterministic vorticity (b) Stochastic Informal description of SPDEs and numerical approximation. a b 7 7 1 6 6 5 5 0.5 4 4 0 y 3 y 3 2 2 −0.5 1 1 0 0 −1 0 2 4 6 0 2 4 6 x x (a) Stochastic (Rough) (b) Stochastic (Smooth) Informal : will cut some corners ! Some (other) reference books for SPDEs ◮ Semigroup approach to SPDEs ◮ Classic reference : Da Prato, Giuseppe and Zabczyk, Jerzy Stochastic Equations in Infinite Dimensions Encyclopedia of Mathematics and its Applications CUP, 1992. ISBN : 0-521-38529-6 ◮ Chow, Pao-Liu Stochastic Partial Differential Equations Chapman & Hall/CRC, Boca Raton, FL 2007, ISBN 978-1-58488-443-9; 1-58488-443-6 ◮ Variational approach ◮ Pr´evˆot, Claudia and Ro¨ckner, Michael A concise course on stochastic partial differential equations Springer,2007, ISBN = 978-3-540-70780-6; 3-540-70780-8. ◮ Numerical methods ◮ Jentzen, Arnulf and Kloeden, Peter E. Taylor approximations for stochastic partial differential equations CBMS-NSF Regional Conference Series in Applied Mathematics SIAM, 2011, ISBN : 978-1-611972-00-9 ◮ Physics approaches ◮ Garc´ıa-Ojalvo, Jordi and Sancho, Jos´e M. Noise in spatially extended systems Springer, ISBN 0-387-98855-6 ◮ C. Gardiner Stochastic Methods: A handbook for the natural and social sciences Springer Series in Synergetics 2009, ISBN 978-3-540-70712-7 ◮ SDEs : plenty of choice. ◮ Øksendal, Bernt,Stochastic Differential Equations,2003. 3-540-04758-1 Background ◮ PDEs ◮ ODEs ◮ SDEs PDE Many physical/biological models are described by parabolic PDEs u = [∆u+f(u)] u(0) = u0given u D (1) t ∈ + BCs on D bounded specified. f(u) given where u(t,x) Two typical examples: ◮ Nagumo equation u = [u +u(1 u)(u α)] u(x,t) R, x [0,L], t > 0 t xx − − ∈ ∈ ◮ Allen-Cahn equation u = u +u u3 u(x,t) R, x [0,2π), t > 0 t xx − ∈ ∈ ◮ We writehsemilinear PDiEs of form u = ∆u+f(u) t as ODE on Hilbert space H (eg L2(D)). du = Au+f(u) dt − A = ∆ − u = Au+f(u) t − Note - we could write solution in three ways : ◮Integrate : t u(t) = u(0)+ ( Au+f(u))ds − Z0 Too restrictive on regularity of u(t). ◮Weak solution (multiply by test fn. Integ. by parts). du(s) ,v = a(u(s),v)+ f(u(s)),v , v V, dt − ∀ ∈ (cid:28) (cid:29) (cid:10) (cid:11) where a(u,v) := A1/2u,A1/2v ◮Variation of constants (cid:10) (cid:11) t u(t) = e tAu(0)+ e (t s)Af(u(s))ds − − − Z0 need to understand semigroup e tA and its properties. − PDE as infinite system of ODEs u = Au+f(u) u(0) = u0 t − ◮ Look at weak solution ◮ Write u as a infinte series u(x,t) = u φ (x) k k k Z X∈ with φ e.func. and λ e.val of A (on D +BCs) k k ◮ Subst. into PDE, take inner-product with φ k du k = λ u +f (u), k Z, f(u) = f (u)φ . k k k k k dt − ∈ k X Get infinite system of ODEs. (truncation leads to spectral Galerkin approximation). ◮ Let’s look at adding noise to ODE ODEs SDEs & Brownian Motion → In each Fourier mode have ODE of the form :Let’s add noise du dβ = λu+f(u)+g(u) dt dt with β (t) Brownian motion. k β = (β (t),β (t), ,β (t)), t 0 1 2 n ··· ≥ Is a (standard) Brownian motion or a Wiener process if for each β j ◮ have β(0) = 0 ◮ Increments β(t) β(s) are normal N(0,t s), for 0 s t. − − ≤ ≤ Equivalently β(t) β(s) √t sN(0,1). − ∼ − ◮ Increments β(t) β(s) and β(τ) β(σ) are independent − − 0 s t σ τ. ≤ ≤ ≤ ≤ Note : β(t) = β(t) 0 = β(t) β(0) N(0,t). − − ∼ So E β(t) = 0 and variance var(β(t)) = E β(t)2 = t. (cid:2) (cid:3) (cid:2) (cid:3)
Description: