ebook img

Stochastic ordinary and stochastic partial differential equations: transition from microscopic to macroscopic equations PDF

458 Pages·2008·2.265 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic ordinary and stochastic partial differential equations: transition from microscopic to macroscopic equations

Stochastic Mechanics Stochastic Modelling Random Media and Applied Probability Signal Processing and Image Synthesis (Formerly: Mathematical Economics and Finance Applications of Mathematics) Stochastic Optimization 58 Stochastic Control Stochastic Models in Life Sciences Edited by B. Rozovskii G. Grimmett Advisory Board D. Dawson D. Geman I. Karatzas F. Kelly Y. Le Jan B. Øksendal G. Papanicolaou E. Pardoux StochasticModellingandAppliedProbability formerly:ApplicationsofMathematics 1 Fleming/Rishel,DeterministicandStochasticOptimalControl(1975) 2 Marchuk,MethodsofNumericalMathematics(1975,2nd.ed.1982) 3 Balakrishnan,AppliedFunctionalAnalysis(1976,2nd.ed.1981) 4 Borovkov,StochasticProcessesinQueueingTheory(1976) 5 Liptser/Shiryaev,StatisticsofRandomProcessesI:GeneralTheory(1977,2nd.ed.2001) 6 Liptser/Shiryaev,StatisticsofRandomProcessesII:Applications(1978,2nd.ed.2001) 7 Vorob’ev,GameTheory:LecturesforEconomistsandSystemsScientists(1977) 8 Shiryaev,OptimalStoppingRules(1978) 9 Ibragimov/Rozanov,GaussianRandomProcesses(1978) 10 Wonham,LinearMultivariableControl:AGeometricApproach(1979,2nd.ed.1985) 11 Hida,BrownianMotion(1980) 12 Hestenes,ConjugateDirectionMethodsinOptimization(1980) 13 Kallianpur,StochasticFilteringTheory(1980) 14 Krylov,ControlledDiffusionProcesses(1980) 15 Prabhu,StochasticStorageProcesses:Queues,InsuranceRisk,andDams(1980) 16 Ibragimov/Has’minskii,StatisticalEstimation:AsymptoticTheory(1981) 17 Cesari,Optimization:TheoryandApplications(1982) 18 Elliott,StochasticCalculusandApplications(1982) 19 Marchuk/Shaidourov,DifferenceMethodsandTheirExtrapolations(1983) 20 Hijab,StabilizationofControlSystems(1986) 21 Protter,StochasticIntegrationandDifferentialEquations(1990) 22 Benveniste/Métivier/Priouret,AdaptiveAlgorithmsandStochasticApproximations(1990) 23 Kloeden/Platen,NumericalSolutionofStochasticDifferentialEquations(1992,corr.3rdprinting 1999) 24 Kushner/Dupuis, NumericalMethodsforStochasticControlProblemsinContinuousTime (1992) 25 Fleming/Soner,ControlledMarkovProcessesandViscositySolutions(1993) 26 Baccelli/Brémaud,ElementsofQueueingTheory(1994,2nd.ed.2003) 27 Winkler,ImageAnalysis,RandomFieldsandDynamicMonteCarloMethods(1995,2nd.ed. 2003) 28 Kalpazidou,CycleRepresentationsofMarkovProcesses(1995) 29 Elliott/Aggoun/Moore,HiddenMarkovModels:EstimationandControl(1995) 30 Hernández-Lerma/Lasserre,Discrete-TimeMarkovControlProcesses(1995) 31 Devroye/Györfi/Lugosi,AProbabilisticTheoryofPatternRecognition(1996) 32 Maitra/Sudderth,DiscreteGamblingandStochasticGames(1996) 33 Embrechts/Klüppelberg/Mikosch,ModellingExtremalEventsforInsuranceandFinance(1997, corr.4thprinting2003) 34 Duflo,RandomIterativeModels(1997) 35 Kushner/Yin,StochasticApproximationAlgorithmsandApplications(1997) 36 Musiela/Rutkowski,MartingaleMethodsinFinancialModelling(1997,2nd.ed.2005) 37 Yin,Continuous-TimeMarkovChainsandApplications(1998) 38 Dembo/Zeitouni,LargeDeviationsTechniquesandApplications(1998) 39 Karatzas,MethodsofMathematicalFinance(1998) 40 Fayolle/Iasnogorodski/Malyshev,RandomWalksintheQuarter-Plane(1999) 41 Aven/Jensen,StochasticModelsinReliability(1999) 42 Hernandez-Lerma/Lasserre,FurtherTopicsonDiscrete-TimeMarkovControlProcesses(1999) 43 Yong/Zhou,StochasticControls.HamiltonianSystemsandHJBEquations(1999) 44 Serfozo,IntroductiontoStochasticNetworks(1999) 45 Steele,StochasticCalculusandFinancialApplications(2001) 46 Chen/Yao,FundamentalsofQueuingNetworks:Performance,Asymptotics,andOptimization (2001) 47 Kushner,HeavyTrafficAnalysisofControlledQueueingandCommunicationsNetworks(2001) 48 Fernholz,StochasticPortfolioTheory(2002) 49 Kabanov/Pergamenshchikov,Two-ScaleStochasticSystems(2003) 50 Han,Information-SpectrumMethodsinInformationTheory(2003) (continuedafterReferences) Peter Kotelenez Stochastic Ordinary and Stochastic Partial Differential Equations Transition from Microscopic to Macroscopic Equations Author PeterKotelenez DepartmentofMathematics CaseWesternReserveUniversity 10900EuclidAve. Cleveland, OH44106–7058 USA [email protected] ManagingEditors B.Rozovskii G.Grimmett DivisionofAppliedMathematics CentreforMathematicalSciences 182GeorgeSt. WilberforceRoad Providence,RI01902 CambridgeCB30WB USA UK [email protected] [email protected] ISBN978-0-387-74316-5 e-ISBN978-0-387-74317-2 DOI:10.1007/978-0-387-74317-2 LibraryofCongressControlNumber:2007940371 Mathematics Subject Classification (2000): 60H15, 60H10, 60F99, 82C22, 82C31, 60K35, 35K55, 35K10,60K37,60G60,60J60 (cid:1)c 2008SpringerScience+BusinessMedia,LLC Allrights reserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper. 9 8 7 6 5 4 3 2 1 springer.com K OTY - To Lydia Contents Introduction ....................................................... 1 PartI FromMicroscopicDynamicstoMesoscopicKinematics 1 Heuristics:MicroscopicModelandSpace–TimeScales ............. 9 2 Deterministic Dynamics in a Lattice Model and a Mesoscopic (Stochastic)Limit .............................................. 15 3 ProofoftheMesoscopicLimitTheorem .......................... 31 PartII MesoscopicA:StochasticOrdinaryDifferentialEquations 4 StochasticOrdinaryDifferentialEquations:Existence,Uniqueness, andFlowsProperties ........................................... 59 4.1 Preliminaries .............................................. 59 4.2 TheGoverningStochasticOrdinaryDifferentialEquations ........ 64 4.3 EquivalenceinDistributionandFlowPropertiesforSODEs....... 73 4.4 Examples ................................................. 78 5 QualitativeBehaviorofCorrelatedBrownianMotions ............. 85 5.1 UncorrelatedandCorrelatedBrownianMotions ................. 85 5.2 ShiftandRotationalInvarianceofw(dq,dt) .................... 92 5.3 SeparationandMagnitudeoftheSeparationofTwoCorrelated BrownianMotionswithShift-Invariant andFrame-IndifferentIntegralKernels......................... 94 5.4 AsymptoticsofTwoCorrelatedBrownianMotions withShift-InvariantandFrame-IndifferentIntegralKernels .......105 vii viii Contents 5.5 DecompositionofaDiffusionintotheFluxandaSymmetric Diffusion .................................................110 5.6 LocalBehaviorofTwoCorrelatedBrownianMotions withShift-InvariantandFrame-IndifferentIntegralKernels .......116 5.7 ExamplesandAdditionalRemarks ............................121 5.8 AsymptoticsofTwoCorrelatedBrownianMotions withShift-InvariantIntegralKernels...........................128 6 ProofoftheFlowProperty ......................................133 6.1 ProofofStatement3ofTheorem4.5 ..........................133 6.2 SmoothnessoftheFlow .....................................138 7 CommentsonSODEs:AComparisonwithOtherApproaches ......151 7.1 PreliminariesandaComparisonwithKunita’sModel ............151 7.2 ExamplesofCorrelationFunctions............................156 PartIII MesoscopicB:StochasticPartialDifferentialEquations 8 StochasticPartialDifferentialEquations: FiniteMassandExtensions .....................................163 8.1 Preliminaries ..............................................163 8.2 APrioriEstimates..........................................171 8.3 NoncoerciveSPDEs ........................................174 8.4 CoerciveandNoncoerciveSPDEs.............................189 8.5 GeneralSPDEs ............................................197 8.6 Semilinear Stochastic Partial Differential Equations inStratonovichForm .......................................198 8.7 Examples .................................................200 9 StochasticPartialDifferentialEquations:InfiniteMass ............203 9.1 NoncoerciveQuasilinearSPDEsforInfiniteMassEvolution ......203 9.2 Noncoercive Semilinear SPDEs for Infinite Mass Evolution inStratonovichForm .......................................219 10 Stochastic Partial Differential Equations: Homogeneous andIsotropicSolutions .........................................221 11 ProofofSmoothness,Integrability, andItoˆ’sFormula ..............................................229 11.1 BasicEstimatesandStateSpaces .............................229 11.2 ProofofSmoothnessof(8.25)and(8.73).......................246 11.3 ProofoftheItoˆ formula(8.42)................................269 12 ProofofUniqueness ............................................273 Contents ix 13 CommentsonOtherApproachestoSPDEs .......................291 13.1 Classification ..............................................291 13.1.1 LinearSPDEs .......................................294 13.1.2 BilinearSPDEs......................................297 13.1.3 SemilinearSPDEs ...................................299 13.1.4 QuasilinearSPDEs...................................301 13.1.5 NonlinearSPDEs ....................................301 13.1.6 StochasticWaveEquations ............................302 13.2 Models ...................................................302 13.2.1 NonlinearFiltering...................................302 13.2.2 SPDEsforMassDistributions .........................303 13.2.3 FluctuationLimitsforParticles.........................304 13.2.4 SPDEsinGenetics ...................................305 13.2.5 SPDEsinNeuroscience...............................305 13.2.6 SPDEsinEuclideanFieldTheory ......................306 13.2.7 SPDEsinFluidMechanics ............................306 13.2.8 SPDEsinSurfacePhysics/Chemistry ...................308 13.2.9 SPDEsforStrings....................................308 13.3 BooksonSPDEs ...........................................308 PartIV Macroscopic:DeterministicPartialDifferentialEquations 14 PartialDifferentialEquationsasaMacroscopicLimit..............313 14.1 LimitingEquationsandHypotheses ...........................313 14.2 TheMacroscopicLimitford 2 .............................316 ≥ 14.3 Examples .................................................327 14.4 ARemarkond 1 ........................................330 = 14.5 ConvergenceofStochasticTransportEquations toMacroscopicParabolicEquations...........................331 PartV GeneralAppendix 15 Appendix .....................................................335 15.1 Analysis ..................................................335 15.1.1 Metric Spaces: Extension by Continuity, Contraction Mappings,andUniformBoundedness...................335 15.1.2 SomeClassicalInequalities............................336 15.1.3 TheSchwarzSpace ..................................340 15.1.4 MetricsonSpacesofMeasures.........................348 15.1.5 RiemannStieltjesIntegrals ............................357 15.1.6 TheSkorokhodSpace D( 0, ) B) ....................359 [ ∞ ; 15.2 Stochastics ................................................362 15.2.1 RelativeCompactnessandWeakConvergence............362 x Contents 15.2.2 RegularandCylindricalHilbertSpace-ValuedBrownian Motions ............................................366 15.2.3 Martingales,QuadraticVariation,andInequalities.........371 15.2.4 RandomCovarianceandSpace–timeCorrelations forCorrelatedBrownianMotions.......................380 15.2.5 StochasticItoˆ Integrals................................387 15.2.6 StochasticStratonovichIntegrals .......................403 15.2.7 Markov-DiffusionProcesses...........................411 15.2.8 Measure-ValuedFlows:ProofofProposition4.3 ..........418 15.3 TheFractionalStepMethod..................................422 15.4 Mechanics:Frame-Indifference...............................424 SubjectIndex ......................................................431 Symbols...........................................................439 References.........................................................445 Introduction Thepresentvolumeanalyzesmathematicalmodelsoftime-dependentphysicalphe- nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a rigorous derivation of each level from the preceding level and the resulting meso- scopic equations are analyzed in detail. Following Haken (1983, Sect. 1.11.6) we deal, “at the microscopic level, with individual atoms or molecules, described by their positions, velocities, and mutual interactions. At the mesoscopic level, we describe the liquid by means of ensembles of many atoms or molecules. The ex- tension of such an ensemble is assumed large compared to interatomic distances but small compared to the evolving macroscopic pattern... . At the macroscopic levelwewishtostudythecorrespondingspatialpatterns.”Typically,atthemacro- scopic level, the systems under consideration are treated as spatially continuous systemssuchasfluidsoracontinuousdistributionofsomechemicalreactants,etc. Incontrast,onthemicroscopiclevel,Newtonianmechanicsgovernstheequationsof motionoftheindividualatomsormolecules.1 Theseequationsarecastintheform ofsystemsofdeterministiccouplednonlinearoscillators.Themesoscopiclevel2 is probabilistic innature and many models may be faithfullydescribed by stochastic ordinaryandstochasticpartialdifferentialequations(SODEsandSPDEs),3 where thelatteraredefinedonacontinuum.Themacroscopiclevelisdescribedbytime- dependentpartialdifferentialequations(PDE’s)anditsgeneralizationandsimplifi- cations. Inourmathematicalframeworkwetalkofparticlesinsteadofatomsandmole- cules. The transition from the microscopic description to a mesoscopic (i.e., sto- chastic)descriptionrequiresthefollowing: Replacementofspatiallyextendedparticlesbypointparticles • Formationofsmallclusters(ensembles)ofparticles(iftheirinitialpositionsand • velocitiesaresimilar) 1Werestrictourselvesinthisvolumeto“classicalphysics”(cf.,e.g.,Heisenberg(1958)). 2Fortherelationbetweennanotechnologyandmesoscales,werefertoRoukes(2001). 3Inthisvolume,mesoscopicequationswillbeidentifiedwithSODEsandSPDEs. 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.