Table Of ContentProbability and Its Applications
PublishedinassociationwiththeAppliedProbabilityTrust
Editors:S. Asmussen,J. Gani,P. Jagers,T.G.Kurtz
Probability and Its Applications
Azencottetal.:SeriesofIrregularObservations.ForecastingandModel
Building.1986
Bass:DiffusionsandEllipticOperators.1997
Bass:ProbabilisticTechniquesinAnalysis.1995
Berglund/Gentz:Noise-InducedPhenomenainSlow-FastDynamicalSystems:
ASample-PathsApproach.2006
Biagini/Hu/Øksendal/Zhang:StochasticCalculusforFractionalBrownianMotion
andApplications.2008
Chen:Eigenvalues,InequalitiesandErgodicTheory.2005
Chen/Goldstein/Shao:NormalApproximationbyStein’sMethod.2011
Costa/Fragoso/Marques:Discrete-TimeMarkovJumpLinearSystems.2005
Daley/Vere-Jones:AnIntroductiontotheTheoryofPointProcessesI:Elementary
TheoryandMethods,2nded.2003,corr.2ndprinting2005
Daley/Vere-Jones:AnIntroductiontotheTheoryofPointProcessesII:General
TheoryandStructure,2nded.2008
delaPeña/Gine:Decoupling:FromDependencetoIndependence,Randomly
StoppedProcesses,U-StatisticsandProcesses,MartingalesandBeyond.1999
delaPeña/Lai/Shao:Self-NormalizedProcesses.2009
DelMoral:Feynman-KacFormulae.GenealogicalandInteractingParticle
SystemswithApplications.2004
Durrett:ProbabilityModelsforDNASequenceEvolution.2002,2nded.2008
Ethier:TheDoctrineofChances.2010
Feng:ThePoisson–DirichletDistributionandRelatedTopics.2010
Galambos/Simonelli:Bonferroni-TypeInequalitieswithEquations.1996
Gani(ed.):TheCraftofProbabilisticModelling.ACollectionofPersonal
Accounts.1986
Gawarecki/Mandrekar: Stochastic Differential Equations in Infinite Dimensions.
2011
Gut:StoppedRandomWalks.LimitTheoremsandApplications.1987
Guyon:RandomFieldsonaNetwork.Modeling,StatisticsandApplications.1995
Kallenberg:FoundationsofModernProbability.1997,2nded.2002
Kallenberg:ProbabilisticSymmetriesandInvariancePrinciples.2005
Högnäs/Mukherjea:ProbabilityMeasuresonSemigroups,2nded.2011
Last/Brandt:MarkedPointProcessesontheRealLine.1995
Li:Measure-ValuedBranchingMarkovProcesses.2011
Molchanov:TheoryofRandomSets.2005
Nualart:TheMalliavinCalculusandRelatedTopics,1995,2nded.2006
Rachev/Rueschendorf:MassTransportationProblems.VolumeI:Theoryand
VolumeII:Applications.1998
Resnick:ExtremeValues,RegularVariationandPointProcesses.1987
Schmidli:StochasticControlinInsurance.2008
Schneider/Weil:StochasticandIntegralGeometry.2008
Serfozo:BasicsofAppliedStochasticProcesses.2009
Shedler:RegenerationandNetworksofQueues.1986
Silvestrov:LimitTheoremsforRandomlyStoppedStochasticProcesses.2004
Thorisson:Coupling,StationarityandRegeneration.2000
Leszek Gawarecki (cid:2) Vidyadhar Mandrekar
Stochastic Differential
Equations in Infinite
Dimensions
with Applications to Stochastic
Partial Differential Equations
LeszekGawarecki VidyadharMandrekar
DepartmentofMathematics DepartmentofStatisticsandProbability
KetteringUniversity MichiganStateUniversity
1700UniversityAve A436WellsHall
Flint,MI48504 EastLansing,MI48823
USA USA
lgawarec@kettering.edu mandrekar@stt.msu.edu
SeriesEditors:
SørenAsmussen PeterJagers
DepartmentofMathematicalSciences MathematicalStatistics
AarhusUniversity ChalmersUniversityofTechnology
NyMunkegade andUniversityofGothenburg
8000AarhusC 41296Göteborg
Denmark Sweden
asmus@imf.au.dk jagers@chalmers.se
JoeGani ThomasG.Kurtz
CentreforMathematicsanditsApplications DepartmentofMathematics
MathematicalSciencesInstitute UniversityofWisconsin-Madison
AustralianNationalUniversity 480LincolnDrive
Canberra,ACT0200 Madison,WI53706-1388
Australia USA
gani@maths.anu.edu.au kurtz@math.wisc.edu
ISSN1431-7028
ISBN978-3-642-16193-3 e-ISBN978-3-642-16194-0
DOI10.1007/978-3-642-16194-0
SpringerHeidelbergDordrechtLondonNewYork
MathematicsSubjectClassification(2010): 35-XX,60-XX
©Springer-VerlagBerlinHeidelberg2011
Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis
concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,
reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication
orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,
1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations
areliabletoprosecutionundertheGermanCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot
imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective
lawsandregulationsandthereforefreeforgeneraluse.
Coverdesign:VTEX,Vilnius
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
We dedicatethisbooktoourwives
EdytaandVeena
for theirencouragement andpatienceduring
thepreparation ofthisbook
Preface
Stochastic differential equations are playing an increasingly important role in
applications to finance, numerical analysis, physics, and biology. In the finite-
dimensional case, there are two definitive books: one by Gikhman and Sko-
rokhod[25],whichstudiestheexistenceanduniquenessproblemalongwithproba-
bilisticpropertiesofsolutions,andanotherbyKhasminskii[39],whichstudiesthe
asymptoticbehaviorofthesolutionsusingtheLyapunovfunctionmethod.Ourob-
ject in this book is to study these topics in the infinite-dimensional case. The two
main problems one faces are the invalidity of the Peano theorem in the infinite-
dimensionalcaseandtheappearanceofunboundedoperatorsifonewantstoapply
finite-dimensionaltechniquestostochasticpartialdifferentialequations(SPDEs).
Motivated by these difficulties, we discuss the theory in the deterministic case
fromtwopointsofview.Thefirstmethod(seePazy[63]andButzerandBerens[6])
involvessemigroupsgeneratedbyunboundedoperatorsandresultsinconstructing
mildsolutions.Theothersets uptheequationinaGelfandtriplet V (cid:2)→H (cid:2)→V∗
∗
ofHilbertspaceswiththespaceV asthedomainoftheunboundedoperatorandV
itscontinuousdual.Inthiscasevariationalsolutionsareproduced.Thisapproachis
studiedbyAgmon[1]andLions[48],whoassumethateithertheinjectionV (cid:2)→H
iscompactandtheunboundedoperatoriscoerciveorthattheunboundedoperator
iscoerciveandmonotone.
The systematic study of the first approach to SPDEs was first undertaken by
Ichikawa [32, 33] and is explained in the timely monographs of Da Prato and
Zabczyk[11,12].TheapproachofJ.P.LionswasfirstusedbyViot[75](seealso
Metivier [56] and Metivier and Viot [58]). Working under the assumption that the
embedding V (cid:2)→H is compact and that the coefficients of the equation are coer-
cive,theexistenceofaweaksolutionwasproven.Theseresultsweregeneralizedby
Pardoux[62],whoassumedcoercivityandmonotonicity,andusedthecrucialdeter-
ministicresultofLions[48]toproducethestrongsolution.Later,Krylov,andRo-
zovskii[42]establishedtheabove-mentionedresultofLionsinthestochasticcase
andalsoproducedstrongsolutions.TheinitialpresentationwasgivenbyRozovskii
in[66].However,ratherrigorousandcompleteexpositioninaslightlygeneralform
isprovidedbyPrévôtandRöckner[64].
vii
viii Preface
InadditiontopresentingtheseresultsonSPDEs,wediscusstheworkofLehaand
Ritter[46,47]onSDEsinR∞ withapplicationstointeractingparticlesystemsand
therelatedworkofAlbeverioetal.[2,3],andalsoofGawareckiandMandrekar[20,
21]ontheequationsinthefieldofGlauberdynamicsforquantumlatticesystems.
InbothcasestheauthorsstudyinfinitesystemsofSDEs.
WedonotpresentheretheapproachusedinKalliapurandXiong[37],asitre-
quiresintroducingadditionalterminologyfornuclearspaces.Forthistypeofprob-
lem (referred to as “type 2” equations by K. Itô in [35]), we refer the reader to
[22,23],and[24],aswellasto[37].
Athirdapproach,whichinvolvessolutionsbeingHidadistributionispresented
byHoldenetal.inthemonograph[31].
The book is divided into two parts. We begin Part I with a discussion of the
semigroup and variational methods for solving PDEs. We simultaneously develop
stochasticcalculuswithrespecttoaQ-WienerprocessandacylindricalWienerpro-
cess,relyingontheclassicapproachpresentedin[49].Thesefoundationsallowusto
developthetheoryofsemilinearpartialdifferentialequations.Weaddressthecase
of Lipschitz coefficients first and produce unique mild solutions as in [11]; how-
ever,wethenextendourresearchtothecasewheretheequationcoefficientsdepend
ontheentire“past”ofthesolution,invokingthetechniquesofGikhmanandSko-
rokhod [25]. We also prove Markov and Feller properties for mild solutions, their
dependenceontheinitialcondition,andtheKolmogorovbackwardequationforthe
relatedtransitionsemigroup.HerewehaveadaptedtheworkofB.Øksendal[61],
S.Cerrai[8],andDaPratoandZabczyk [11].
TogobeyondtheLipschitzcase,wehaveadaptedthemethodofapproximating
continuousfunctionsbyLipschitzfunctionsf :[0,T]×Rn→Rn fromGikhman
andSkorokhod[25]tothecaseofcontinuousfunctionsf :[0,T]×H →H [22].
This technique enabled us to study the existence of weak solutions for SDEs with
continuouscoefficients,withthesolutionidentifiedinalargerHilbertspace,where
theoriginalHilbertspaceiscompactlyembedded.Thisarrangementisused,aswe
havealreadymentioned,duetotheinvalidityofthePeanotheorem.Inaddition,we
studymartingalesolutionstosemilinearSDEsinthecaseofacompactsemigroup
andforcoefficientsdependingontheentirepastofthesolution.
ThevariationalmethodisaddressedinChap.4,wherewestudyboththeweak
andstrongsolutions.Theproblemoftheexistenceofweakvariationalsolutionsis
not well addressed in the existent literature, and our original results are obtained
withthehelpoftheideaspresentedinKallianpuretal.[36].Wehavefollowedthe
approachofPrévôtandRöcknerinourpresentationoftheproblemoftheexistence
anduniquenessofstrongsolutions.
WeconcludePartIwithaninterestingproblemofaninfinitesystemofSDEsthat
doesnotarisefromastochasticpartialdifferentialequationandservesasamodelof
aninteractingparticlesystemandinGlauberdynamicsforquantumlatticesystems.
InPartIIofthebook,wepresenttheasymptoticbehaviorsofsolutionstoinfinite-
dimensionalstochasticdifferentialequations.Thestudyofthistopicwasundertaken
forspecificcasesbyIchikawa[32,33]andDaPratoandZabczyk[12]inthecase
ofmildsolutions.A generalLyapunovfunctionapproachfor strongsolutionsina
Preface ix
GelfandtripletsettingforexponentialstabilitywasoriginatedintheworkofKhas-
minskii and Mandrekar [40] (see also [55]). A generalization of this approach for
mild and strong solutions involving exponential boundedness was put forward by
R.LiuandMandrekar[52,53].Thisworkallowsreaderstostudytheexistenceof
invariant measure [52] and weak recurrence of the solutions to compact sets [51].
Some of these results were presented by K. Liu in a slightly more general form
in[50].
Althoughwehavestudiedtheexistenceanduniquenessofnon-Markoviansolu-
tions, we do not investigate the ergodic properties of these processes, as the tech-
niquesinthisfieldarestillindevelopment[28].
EastLansing LeszekGawarecki
October,2010 VidyadharMandrekar
Description:The systematic study of existence, uniqueness, and properties of solutions to stochastic differential equations in infinite dimensions arising from practical problems characterizes this volume that is intended for graduate students and for pure and applied mathematicians, physicists, engineers, prof