ebook img

Stochastic Differential Equations in Infinite Dimensions: with Applications to Stochastic Partial Differential Equations PDF

308 Pages·2011·1.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic Differential Equations in Infinite Dimensions: with Applications to Stochastic Partial Differential Equations

Probability and Its Applications PublishedinassociationwiththeAppliedProbabilityTrust Editors:S. Asmussen,J. Gani,P. Jagers,T.G.Kurtz Probability and Its Applications Azencottetal.:SeriesofIrregularObservations.ForecastingandModel Building.1986 Bass:DiffusionsandEllipticOperators.1997 Bass:ProbabilisticTechniquesinAnalysis.1995 Berglund/Gentz:Noise-InducedPhenomenainSlow-FastDynamicalSystems: ASample-PathsApproach.2006 Biagini/Hu/Øksendal/Zhang:StochasticCalculusforFractionalBrownianMotion andApplications.2008 Chen:Eigenvalues,InequalitiesandErgodicTheory.2005 Chen/Goldstein/Shao:NormalApproximationbyStein’sMethod.2011 Costa/Fragoso/Marques:Discrete-TimeMarkovJumpLinearSystems.2005 Daley/Vere-Jones:AnIntroductiontotheTheoryofPointProcessesI:Elementary TheoryandMethods,2nded.2003,corr.2ndprinting2005 Daley/Vere-Jones:AnIntroductiontotheTheoryofPointProcessesII:General TheoryandStructure,2nded.2008 delaPeña/Gine:Decoupling:FromDependencetoIndependence,Randomly StoppedProcesses,U-StatisticsandProcesses,MartingalesandBeyond.1999 delaPeña/Lai/Shao:Self-NormalizedProcesses.2009 DelMoral:Feynman-KacFormulae.GenealogicalandInteractingParticle SystemswithApplications.2004 Durrett:ProbabilityModelsforDNASequenceEvolution.2002,2nded.2008 Ethier:TheDoctrineofChances.2010 Feng:ThePoisson–DirichletDistributionandRelatedTopics.2010 Galambos/Simonelli:Bonferroni-TypeInequalitieswithEquations.1996 Gani(ed.):TheCraftofProbabilisticModelling.ACollectionofPersonal Accounts.1986 Gawarecki/Mandrekar: Stochastic Differential Equations in Infinite Dimensions. 2011 Gut:StoppedRandomWalks.LimitTheoremsandApplications.1987 Guyon:RandomFieldsonaNetwork.Modeling,StatisticsandApplications.1995 Kallenberg:FoundationsofModernProbability.1997,2nded.2002 Kallenberg:ProbabilisticSymmetriesandInvariancePrinciples.2005 Högnäs/Mukherjea:ProbabilityMeasuresonSemigroups,2nded.2011 Last/Brandt:MarkedPointProcessesontheRealLine.1995 Li:Measure-ValuedBranchingMarkovProcesses.2011 Molchanov:TheoryofRandomSets.2005 Nualart:TheMalliavinCalculusandRelatedTopics,1995,2nded.2006 Rachev/Rueschendorf:MassTransportationProblems.VolumeI:Theoryand VolumeII:Applications.1998 Resnick:ExtremeValues,RegularVariationandPointProcesses.1987 Schmidli:StochasticControlinInsurance.2008 Schneider/Weil:StochasticandIntegralGeometry.2008 Serfozo:BasicsofAppliedStochasticProcesses.2009 Shedler:RegenerationandNetworksofQueues.1986 Silvestrov:LimitTheoremsforRandomlyStoppedStochasticProcesses.2004 Thorisson:Coupling,StationarityandRegeneration.2000 Leszek Gawarecki (cid:2) Vidyadhar Mandrekar Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations LeszekGawarecki VidyadharMandrekar DepartmentofMathematics DepartmentofStatisticsandProbability KetteringUniversity MichiganStateUniversity 1700UniversityAve A436WellsHall Flint,MI48504 EastLansing,MI48823 USA USA [email protected] [email protected] SeriesEditors: SørenAsmussen PeterJagers DepartmentofMathematicalSciences MathematicalStatistics AarhusUniversity ChalmersUniversityofTechnology NyMunkegade andUniversityofGothenburg 8000AarhusC 41296Göteborg Denmark Sweden [email protected] [email protected] JoeGani ThomasG.Kurtz CentreforMathematicsanditsApplications DepartmentofMathematics MathematicalSciencesInstitute UniversityofWisconsin-Madison AustralianNationalUniversity 480LincolnDrive Canberra,ACT0200 Madison,WI53706-1388 Australia USA [email protected] [email protected] ISSN1431-7028 ISBN978-3-642-16193-3 e-ISBN978-3-642-16194-0 DOI10.1007/978-3-642-16194-0 SpringerHeidelbergDordrechtLondonNewYork MathematicsSubjectClassification(2010): 35-XX,60-XX ©Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:VTEX,Vilnius Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) We dedicatethisbooktoourwives EdytaandVeena for theirencouragement andpatienceduring thepreparation ofthisbook Preface Stochastic differential equations are playing an increasingly important role in applications to finance, numerical analysis, physics, and biology. In the finite- dimensional case, there are two definitive books: one by Gikhman and Sko- rokhod[25],whichstudiestheexistenceanduniquenessproblemalongwithproba- bilisticpropertiesofsolutions,andanotherbyKhasminskii[39],whichstudiesthe asymptoticbehaviorofthesolutionsusingtheLyapunovfunctionmethod.Ourob- ject in this book is to study these topics in the infinite-dimensional case. The two main problems one faces are the invalidity of the Peano theorem in the infinite- dimensionalcaseandtheappearanceofunboundedoperatorsifonewantstoapply finite-dimensionaltechniquestostochasticpartialdifferentialequations(SPDEs). Motivated by these difficulties, we discuss the theory in the deterministic case fromtwopointsofview.Thefirstmethod(seePazy[63]andButzerandBerens[6]) involvessemigroupsgeneratedbyunboundedoperatorsandresultsinconstructing mildsolutions.Theothersets uptheequationinaGelfandtriplet V (cid:2)→H (cid:2)→V∗ ∗ ofHilbertspaceswiththespaceV asthedomainoftheunboundedoperatorandV itscontinuousdual.Inthiscasevariationalsolutionsareproduced.Thisapproachis studiedbyAgmon[1]andLions[48],whoassumethateithertheinjectionV (cid:2)→H iscompactandtheunboundedoperatoriscoerciveorthattheunboundedoperator iscoerciveandmonotone. The systematic study of the first approach to SPDEs was first undertaken by Ichikawa [32, 33] and is explained in the timely monographs of Da Prato and Zabczyk[11,12].TheapproachofJ.P.LionswasfirstusedbyViot[75](seealso Metivier [56] and Metivier and Viot [58]). Working under the assumption that the embedding V (cid:2)→H is compact and that the coefficients of the equation are coer- cive,theexistenceofaweaksolutionwasproven.Theseresultsweregeneralizedby Pardoux[62],whoassumedcoercivityandmonotonicity,andusedthecrucialdeter- ministicresultofLions[48]toproducethestrongsolution.Later,Krylov,andRo- zovskii[42]establishedtheabove-mentionedresultofLionsinthestochasticcase andalsoproducedstrongsolutions.TheinitialpresentationwasgivenbyRozovskii in[66].However,ratherrigorousandcompleteexpositioninaslightlygeneralform isprovidedbyPrévôtandRöckner[64]. vii viii Preface InadditiontopresentingtheseresultsonSPDEs,wediscusstheworkofLehaand Ritter[46,47]onSDEsinR∞ withapplicationstointeractingparticlesystemsand therelatedworkofAlbeverioetal.[2,3],andalsoofGawareckiandMandrekar[20, 21]ontheequationsinthefieldofGlauberdynamicsforquantumlatticesystems. InbothcasestheauthorsstudyinfinitesystemsofSDEs. WedonotpresentheretheapproachusedinKalliapurandXiong[37],asitre- quiresintroducingadditionalterminologyfornuclearspaces.Forthistypeofprob- lem (referred to as “type 2” equations by K. Itô in [35]), we refer the reader to [22,23],and[24],aswellasto[37]. Athirdapproach,whichinvolvessolutionsbeingHidadistributionispresented byHoldenetal.inthemonograph[31]. The book is divided into two parts. We begin Part I with a discussion of the semigroup and variational methods for solving PDEs. We simultaneously develop stochasticcalculuswithrespecttoaQ-WienerprocessandacylindricalWienerpro- cess,relyingontheclassicapproachpresentedin[49].Thesefoundationsallowusto developthetheoryofsemilinearpartialdifferentialequations.Weaddressthecase of Lipschitz coefficients first and produce unique mild solutions as in [11]; how- ever,wethenextendourresearchtothecasewheretheequationcoefficientsdepend ontheentire“past”ofthesolution,invokingthetechniquesofGikhmanandSko- rokhod [25]. We also prove Markov and Feller properties for mild solutions, their dependenceontheinitialcondition,andtheKolmogorovbackwardequationforthe relatedtransitionsemigroup.HerewehaveadaptedtheworkofB.Øksendal[61], S.Cerrai[8],andDaPratoandZabczyk [11]. TogobeyondtheLipschitzcase,wehaveadaptedthemethodofapproximating continuousfunctionsbyLipschitzfunctionsf :[0,T]×Rn→Rn fromGikhman andSkorokhod[25]tothecaseofcontinuousfunctionsf :[0,T]×H →H [22]. This technique enabled us to study the existence of weak solutions for SDEs with continuouscoefficients,withthesolutionidentifiedinalargerHilbertspace,where theoriginalHilbertspaceiscompactlyembedded.Thisarrangementisused,aswe havealreadymentioned,duetotheinvalidityofthePeanotheorem.Inaddition,we studymartingalesolutionstosemilinearSDEsinthecaseofacompactsemigroup andforcoefficientsdependingontheentirepastofthesolution. ThevariationalmethodisaddressedinChap.4,wherewestudyboththeweak andstrongsolutions.Theproblemoftheexistenceofweakvariationalsolutionsis not well addressed in the existent literature, and our original results are obtained withthehelpoftheideaspresentedinKallianpuretal.[36].Wehavefollowedthe approachofPrévôtandRöcknerinourpresentationoftheproblemoftheexistence anduniquenessofstrongsolutions. WeconcludePartIwithaninterestingproblemofaninfinitesystemofSDEsthat doesnotarisefromastochasticpartialdifferentialequationandservesasamodelof aninteractingparticlesystemandinGlauberdynamicsforquantumlatticesystems. InPartIIofthebook,wepresenttheasymptoticbehaviorsofsolutionstoinfinite- dimensionalstochasticdifferentialequations.Thestudyofthistopicwasundertaken forspecificcasesbyIchikawa[32,33]andDaPratoandZabczyk[12]inthecase ofmildsolutions.A generalLyapunovfunctionapproachfor strongsolutionsina Preface ix GelfandtripletsettingforexponentialstabilitywasoriginatedintheworkofKhas- minskii and Mandrekar [40] (see also [55]). A generalization of this approach for mild and strong solutions involving exponential boundedness was put forward by R.LiuandMandrekar[52,53].Thisworkallowsreaderstostudytheexistenceof invariant measure [52] and weak recurrence of the solutions to compact sets [51]. Some of these results were presented by K. Liu in a slightly more general form in[50]. Althoughwehavestudiedtheexistenceanduniquenessofnon-Markoviansolu- tions, we do not investigate the ergodic properties of these processes, as the tech- niquesinthisfieldarestillindevelopment[28]. EastLansing LeszekGawarecki October,2010 VidyadharMandrekar

Description:
The systematic study of existence, uniqueness, and properties of solutions to stochastic differential equations in infinite dimensions arising from practical problems characterizes this volume that is intended for graduate students and for pure and applied mathematicians, physicists, engineers, prof
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.