Probability and Its Applications PublishedinassociationwiththeAppliedProbabilityTrust Editors:S. Asmussen,J. Gani,P. Jagers,T.G.Kurtz Probability and Its Applications Azencottetal.:SeriesofIrregularObservations.ForecastingandModel Building.1986 Bass:DiffusionsandEllipticOperators.1997 Bass:ProbabilisticTechniquesinAnalysis.1995 Berglund/Gentz:Noise-InducedPhenomenainSlow-FastDynamicalSystems: ASample-PathsApproach.2006 Biagini/Hu/Øksendal/Zhang:StochasticCalculusforFractionalBrownianMotion andApplications.2008 Chen:Eigenvalues,InequalitiesandErgodicTheory.2005 Chen/Goldstein/Shao:NormalApproximationbyStein’sMethod.2011 Costa/Fragoso/Marques:Discrete-TimeMarkovJumpLinearSystems.2005 Daley/Vere-Jones:AnIntroductiontotheTheoryofPointProcessesI:Elementary TheoryandMethods,2nded.2003,corr.2ndprinting2005 Daley/Vere-Jones:AnIntroductiontotheTheoryofPointProcessesII:General TheoryandStructure,2nded.2008 delaPeña/Gine:Decoupling:FromDependencetoIndependence,Randomly StoppedProcesses,U-StatisticsandProcesses,MartingalesandBeyond.1999 delaPeña/Lai/Shao:Self-NormalizedProcesses.2009 DelMoral:Feynman-KacFormulae.GenealogicalandInteractingParticle SystemswithApplications.2004 Durrett:ProbabilityModelsforDNASequenceEvolution.2002,2nded.2008 Ethier:TheDoctrineofChances.2010 Feng:ThePoisson–DirichletDistributionandRelatedTopics.2010 Galambos/Simonelli:Bonferroni-TypeInequalitieswithEquations.1996 Gani(ed.):TheCraftofProbabilisticModelling.ACollectionofPersonal Accounts.1986 Gawarecki/Mandrekar: Stochastic Differential Equations in Infinite Dimensions. 2011 Gut:StoppedRandomWalks.LimitTheoremsandApplications.1987 Guyon:RandomFieldsonaNetwork.Modeling,StatisticsandApplications.1995 Kallenberg:FoundationsofModernProbability.1997,2nded.2002 Kallenberg:ProbabilisticSymmetriesandInvariancePrinciples.2005 Högnäs/Mukherjea:ProbabilityMeasuresonSemigroups,2nded.2011 Last/Brandt:MarkedPointProcessesontheRealLine.1995 Li:Measure-ValuedBranchingMarkovProcesses.2011 Molchanov:TheoryofRandomSets.2005 Nualart:TheMalliavinCalculusandRelatedTopics,1995,2nded.2006 Rachev/Rueschendorf:MassTransportationProblems.VolumeI:Theoryand VolumeII:Applications.1998 Resnick:ExtremeValues,RegularVariationandPointProcesses.1987 Schmidli:StochasticControlinInsurance.2008 Schneider/Weil:StochasticandIntegralGeometry.2008 Serfozo:BasicsofAppliedStochasticProcesses.2009 Shedler:RegenerationandNetworksofQueues.1986 Silvestrov:LimitTheoremsforRandomlyStoppedStochasticProcesses.2004 Thorisson:Coupling,StationarityandRegeneration.2000 Leszek Gawarecki (cid:2) Vidyadhar Mandrekar Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations LeszekGawarecki VidyadharMandrekar DepartmentofMathematics DepartmentofStatisticsandProbability KetteringUniversity MichiganStateUniversity 1700UniversityAve A436WellsHall Flint,MI48504 EastLansing,MI48823 USA USA [email protected] [email protected] SeriesEditors: SørenAsmussen PeterJagers DepartmentofMathematicalSciences MathematicalStatistics AarhusUniversity ChalmersUniversityofTechnology NyMunkegade andUniversityofGothenburg 8000AarhusC 41296Göteborg Denmark Sweden [email protected] [email protected] JoeGani ThomasG.Kurtz CentreforMathematicsanditsApplications DepartmentofMathematics MathematicalSciencesInstitute UniversityofWisconsin-Madison AustralianNationalUniversity 480LincolnDrive Canberra,ACT0200 Madison,WI53706-1388 Australia USA [email protected] [email protected] ISSN1431-7028 ISBN978-3-642-16193-3 e-ISBN978-3-642-16194-0 DOI10.1007/978-3-642-16194-0 SpringerHeidelbergDordrechtLondonNewYork MathematicsSubjectClassification(2010): 35-XX,60-XX ©Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:VTEX,Vilnius Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) We dedicatethisbooktoourwives EdytaandVeena for theirencouragement andpatienceduring thepreparation ofthisbook Preface Stochastic differential equations are playing an increasingly important role in applications to finance, numerical analysis, physics, and biology. In the finite- dimensional case, there are two definitive books: one by Gikhman and Sko- rokhod[25],whichstudiestheexistenceanduniquenessproblemalongwithproba- bilisticpropertiesofsolutions,andanotherbyKhasminskii[39],whichstudiesthe asymptoticbehaviorofthesolutionsusingtheLyapunovfunctionmethod.Ourob- ject in this book is to study these topics in the infinite-dimensional case. The two main problems one faces are the invalidity of the Peano theorem in the infinite- dimensionalcaseandtheappearanceofunboundedoperatorsifonewantstoapply finite-dimensionaltechniquestostochasticpartialdifferentialequations(SPDEs). Motivated by these difficulties, we discuss the theory in the deterministic case fromtwopointsofview.Thefirstmethod(seePazy[63]andButzerandBerens[6]) involvessemigroupsgeneratedbyunboundedoperatorsandresultsinconstructing mildsolutions.Theothersets uptheequationinaGelfandtriplet V (cid:2)→H (cid:2)→V∗ ∗ ofHilbertspaceswiththespaceV asthedomainoftheunboundedoperatorandV itscontinuousdual.Inthiscasevariationalsolutionsareproduced.Thisapproachis studiedbyAgmon[1]andLions[48],whoassumethateithertheinjectionV (cid:2)→H iscompactandtheunboundedoperatoriscoerciveorthattheunboundedoperator iscoerciveandmonotone. The systematic study of the first approach to SPDEs was first undertaken by Ichikawa [32, 33] and is explained in the timely monographs of Da Prato and Zabczyk[11,12].TheapproachofJ.P.LionswasfirstusedbyViot[75](seealso Metivier [56] and Metivier and Viot [58]). Working under the assumption that the embedding V (cid:2)→H is compact and that the coefficients of the equation are coer- cive,theexistenceofaweaksolutionwasproven.Theseresultsweregeneralizedby Pardoux[62],whoassumedcoercivityandmonotonicity,andusedthecrucialdeter- ministicresultofLions[48]toproducethestrongsolution.Later,Krylov,andRo- zovskii[42]establishedtheabove-mentionedresultofLionsinthestochasticcase andalsoproducedstrongsolutions.TheinitialpresentationwasgivenbyRozovskii in[66].However,ratherrigorousandcompleteexpositioninaslightlygeneralform isprovidedbyPrévôtandRöckner[64]. vii viii Preface InadditiontopresentingtheseresultsonSPDEs,wediscusstheworkofLehaand Ritter[46,47]onSDEsinR∞ withapplicationstointeractingparticlesystemsand therelatedworkofAlbeverioetal.[2,3],andalsoofGawareckiandMandrekar[20, 21]ontheequationsinthefieldofGlauberdynamicsforquantumlatticesystems. InbothcasestheauthorsstudyinfinitesystemsofSDEs. WedonotpresentheretheapproachusedinKalliapurandXiong[37],asitre- quiresintroducingadditionalterminologyfornuclearspaces.Forthistypeofprob- lem (referred to as “type 2” equations by K. Itô in [35]), we refer the reader to [22,23],and[24],aswellasto[37]. Athirdapproach,whichinvolvessolutionsbeingHidadistributionispresented byHoldenetal.inthemonograph[31]. The book is divided into two parts. We begin Part I with a discussion of the semigroup and variational methods for solving PDEs. We simultaneously develop stochasticcalculuswithrespecttoaQ-WienerprocessandacylindricalWienerpro- cess,relyingontheclassicapproachpresentedin[49].Thesefoundationsallowusto developthetheoryofsemilinearpartialdifferentialequations.Weaddressthecase of Lipschitz coefficients first and produce unique mild solutions as in [11]; how- ever,wethenextendourresearchtothecasewheretheequationcoefficientsdepend ontheentire“past”ofthesolution,invokingthetechniquesofGikhmanandSko- rokhod [25]. We also prove Markov and Feller properties for mild solutions, their dependenceontheinitialcondition,andtheKolmogorovbackwardequationforthe relatedtransitionsemigroup.HerewehaveadaptedtheworkofB.Øksendal[61], S.Cerrai[8],andDaPratoandZabczyk [11]. TogobeyondtheLipschitzcase,wehaveadaptedthemethodofapproximating continuousfunctionsbyLipschitzfunctionsf :[0,T]×Rn→Rn fromGikhman andSkorokhod[25]tothecaseofcontinuousfunctionsf :[0,T]×H →H [22]. This technique enabled us to study the existence of weak solutions for SDEs with continuouscoefficients,withthesolutionidentifiedinalargerHilbertspace,where theoriginalHilbertspaceiscompactlyembedded.Thisarrangementisused,aswe havealreadymentioned,duetotheinvalidityofthePeanotheorem.Inaddition,we studymartingalesolutionstosemilinearSDEsinthecaseofacompactsemigroup andforcoefficientsdependingontheentirepastofthesolution. ThevariationalmethodisaddressedinChap.4,wherewestudyboththeweak andstrongsolutions.Theproblemoftheexistenceofweakvariationalsolutionsis not well addressed in the existent literature, and our original results are obtained withthehelpoftheideaspresentedinKallianpuretal.[36].Wehavefollowedthe approachofPrévôtandRöcknerinourpresentationoftheproblemoftheexistence anduniquenessofstrongsolutions. WeconcludePartIwithaninterestingproblemofaninfinitesystemofSDEsthat doesnotarisefromastochasticpartialdifferentialequationandservesasamodelof aninteractingparticlesystemandinGlauberdynamicsforquantumlatticesystems. InPartIIofthebook,wepresenttheasymptoticbehaviorsofsolutionstoinfinite- dimensionalstochasticdifferentialequations.Thestudyofthistopicwasundertaken forspecificcasesbyIchikawa[32,33]andDaPratoandZabczyk[12]inthecase ofmildsolutions.A generalLyapunovfunctionapproachfor strongsolutionsina Preface ix GelfandtripletsettingforexponentialstabilitywasoriginatedintheworkofKhas- minskii and Mandrekar [40] (see also [55]). A generalization of this approach for mild and strong solutions involving exponential boundedness was put forward by R.LiuandMandrekar[52,53].Thisworkallowsreaderstostudytheexistenceof invariant measure [52] and weak recurrence of the solutions to compact sets [51]. Some of these results were presented by K. Liu in a slightly more general form in[50]. Althoughwehavestudiedtheexistenceanduniquenessofnon-Markoviansolu- tions, we do not investigate the ergodic properties of these processes, as the tech- niquesinthisfieldarestillindevelopment[28]. EastLansing LeszekGawarecki October,2010 VidyadharMandrekar
Description: