ebook img

Statistical Thinking From Scratch: A Primer For Scientists PDF

318 Pages·2019·6.048 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Thinking From Scratch: A Primer For Scientists

OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi Statistical Thinking from Scratch OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi Statistical Thinking from Scratch A Primer for Scientists M. D. EDGE 1 OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©M.D.Edge2019 Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2019 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2019934651 ISBN978–0–19–882762–7(hbk.) ISBN978–0–19–882763–4(pbk.) DOI:10.1093/oso/9780198827627.001.0001 Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork. OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi forIsabel OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi Contents Acknowledgments xi Prelude 1 1 Encountering data 5 1.1 Thingstocome 7 2 R and exploratory data analysis 11 2.1 InteractingwithR 13 2.2 Tutorial:theIrisdata 15 2.3 Chaptersummary 24 2.4 Furtherreading 25 3 The line of best fit 26 Box3-1: Mathematicsrequiredforthischapter 27 3.1 Definingthe“best”fit 28 3.2 Derivation:findingtheleast-squaresline 31 3.3 Conclusions 34 3.4 Chaptersummary 37 3.5 Furtherreading 37 4 Probability and random variables 38 Box4-1: Setsandsetnotation 40 4.1 [Optionalsection]Theaxiomsofprobability 41 4.2 Relationshipsbetweenevents:conditionalprobabilityandindependence 43 4.3 Bayes’theorem 45 Box4-2: Bayes’theoreminstatistics 47 4.4 Discreterandomvariablesanddistributions 48 4.5 Continuousrandomvariablesanddistributions 51 Box4-3: Integration 52 4.6 Probabilitydensityfunctions 53 4.7 Familiesofdistributions 55 4.8 Chaptersummary 58 4.9 Furtherreading 58 OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi viii CONTENTS 5 Properties of random variables 60 5.1 Expectedvaluesandthelawoflargenumbers 60 Box5-1: Measuresoflocation 61 5.2 Varianceandstandarddeviation 65 5.3 Jointdistributions,covariance,andcorrelation 68 5.4 [Optionalsection]Conditionaldistribution,expectation,andvariance 72 5.5 Thecentrallimittheorem 74 5.6 Aprobabilisticmodelforsimplelinearregression 79 Box5-2: Assumptionsaboutthelinearmodelandclaimsthatfollow 80 5.7 Chaptersummary 86 5.8 Furtherreading 86 Interlude 88 6 Properties of point estimators 91 Box6-1: Processes,populations,andsamples 92 6.1 Bias 94 6.2 Variance 96 6.3 Meansquarederror 96 6.4 Consistency 97 6.5 Efficiency 99 6.6 [Optionalsection]Statisticaldecisiontheoryandrisk 100 6.7 Robustness 103 6.8 Estimatorsforsimplelinearregression 105 6.9 Conclusion 109 6.10 Chaptersummary 109 6.11 Furtherreading 109 7 Interval estimation and inference 111 7.1 Standarderror 111 7.2 Confidenceintervals 112 Box7-1: Athoughtexperimentaboutconfidenceintervals 114 7.3 FrequentistinferenceI:nullhypotheses,teststatistics,andpvalues 116 7.4 FrequentistinferenceII:alternativehypothesesandtherejection framework 121 7.5 [Optionalsection]Connectinghypothesistestsandconfidenceintervals 124 7.6 NHSTandtheabuseoftests 125 7.6.1 Lackofreplication 125 7.6.2 Ossificationofα=0.05 125 7.6.3 α=0.05asagatekeeper 126 7.6.4 Identificationofscientifichypothesiswithastatisticalhypothesis 126 7.6.5 Neglectofothergoals,suchasestimationandprediction 126 7.6.6 Adegradedintellectualculture 127 7.6.7 EvaluatingsignificancetestsinlightofNHST 129 OUPCORRECTEDPROOF–FINAL,16/5/2019,SPi CONTENTS ix 7.7 FrequentistinferenceIII:power 131 7.8 Puttingittogether:Whathappenswhenthesamplesizeincreases? 135 7.9 Chaptersummary 137 7.10 Furtherreading 137 8 Semiparametric estimation and inference 139 8.1 Semiparametricpointestimationusingthemethodofmoments 142 8.1.1 Plug-inestimators 143 8.1.2 Themethodofmoments 145 8.2 Semiparametricintervalestimationusingthebootstrap 149 Box8-1: Bootstrappivotalintervals 154 8.3 Semiparametrichypothesistestingusingpermutationtests 157 8.4 Conclusion 162 8.5 Chaptersummary 163 8.6 Furtherreading 163 9 Parametric estimation and inference 165 Box9-1: Logarithms 166 9.1 Parametricestimationusingmaximumlikelihood 168 9.1.1 Maximum-likelihoodestimationforsimplelinearregression 172 9.2 Parametricintervalestimation:thedirectapproachandFisher information 175 9.2.1 Thedirectapproach 175 9.2.2 [Optionalsubsection]TheFisherinformationapproach 177 9.3 ParametrichypothesistestingusingtheWaldtest 180 9.3.1 TheWaldtest 180 9.4 [Optionalsection]Parametrichypothesistestingusingthe likelihood-ratiotest 181 9.5 Chaptersummary 185 9.6 Furtherreading 185 10 Bayesian estimation and inference 186 10.1 Howtochooseapriordistribution? 187 10.2 Theunscaledposterior,conjugacy,andsamplingfromtheposterior 188 10.3 BayesianpointestimationusingBayesestimators 193 10.4 Bayesianintervalestimationusingcredibleintervals 196 10.5 [Optionalsection]Bayesian“hypothesistesting”usingBayesfactors 198 10.6 Conclusion:Bayesianvs.frequentistmethods 201 10.7 Chaptersummary 202 10.8 Furtherreading 202

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.