ebook img

Statistical Physics PDF

205 Pages·1995·2.778 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Physics

StatisticalPhysics Statistical Physics Second Revised and Enlarged Edition by Tony Guénault EmeritusProfessorofLowTemperaturePhysics LancasterUniversity,UK AC.I.P.CataloguerecordforthisbookisavailablefromtheLibraryofCongress. ISBN978-1-4020-5974-2(PB) ISBN978-1-4020-5975-9(e-book) PublishedbySpringer, P.O.Box17,3300AADordrecht,TheNetherlands. www.springer.com Printedonacid-freepaper Firstedition1988 Secondedition1995 Reprinted1996,2000,2001,2003 Reprintedrevisedandenlargedsecondedition2007 AllRightsReserved ©1988,1995A.M.Guénault ©2007Springer Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurposeof beingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Table of contents Preface ix 1 Basicideas 1 1.1 Themacrostate 1 1.2 Microstates 2 1.3 Theaveragingpostulate 3 1.4 Distributions 4 1.5 Thestatisticalmethodinoutline 6 1.6 Amodelexample 7 1.7 Statisticalentropyandmicrostates 10 1.8 Summary 11 2 Distinguishableparticles 13 2.1 TheThermalEquilibriumDistribution 14 2.2 Whatareαandβ? 17 2.3 Astatisticaldefinitionoftemperature 18 2.4 Theboltzmanndistributionandthepartitionfunction 21 2.5 Calculationofthermodynamicfunctions 22 2.6 Summary 23 3 Twoexamples 25 3.1 ASpin-1 solid 25 2 3.2 Localizedharmonicoscillators 36 3.3 Summary 40 4 Gases:thedensityofstates 43 4.1 Fittingwavesintoboxes 43 4.2 Otherinformationforstatisticalphysics 47 4.3 Anexample–heliumgas 48 4.4 Summary 49 5 Gases:thedistributions 51 5.1 Distributioningroups 51 5.2 Identicalparticles–fermionsandbosons 53 5.3 Countingmicrostatesforgases 55 5.4 Thethreedistributions 58 5.5 Summary 61 v vi Tableofcontents 6 Maxwell–Boltzmanngases 63 6.1 ThevalidityoftheMaxwell–Boltzmannlimit 63 6.2 TheMaxwell–Boltzmanndistributionofspeeds 65 6.3 Theconnectiontothermodynamics 68 6.4 Summary 71 7 Diatomicgases 73 7.1 Energycontributionsindiatomicgases 73 7.2 Heatcapacityofadiatomicgas 75 7.3 Theheatcapacityofhydrogen 78 7.4 Summary 81 8 Fermi–Diracgases 83 8.1 PropertiesofanidealFermi–Diracgas 84 8.2 Applicationtometals 91 8.3 Applicationtohelium-3 92 8.4 Summary 95 9 Bose–Einsteingases 97 9.1 PropertiesofanidealBose–Einsteingas 97 9.2 Applicationtohelium-4 101 9.3 Phoneybosons 104 9.4 Anoteaboutcoldatoms 109 9.5 Summary 109 10 Entropyinothersituations 111 10.1 Entropyanddisorder 111 10.2 Anassemblyatfixedtemperature 114 10.3 Vacanciesinsolids 116 11 Phasetransitions 119 11.1 Typesofphasetransition 119 11.2 Ferromagnetismofaspin-1 solid 120 2 11.3 Realferromagneticmaterials 126 11.4 Order–disordertransformationsinalloys 127 12 Twonewideas 129 12.1 Staticsordynamics? 129 12.2 Ensembles–alargerview 132 13 Chemicalthermodynamics 137 13.1 Chemicalpotentialrevisited 137 13.2 Thegrandcanonicalensemble 139 13.3 Idealgasesinthegrandensemble 141 13.4 Mixedsystemsandchemicalreactions 146 Tableofcontents vii 14 Dealingwithinteractions 153 14.1 Electronsinmetals 154 14.2 Liquidhelium-3:AFermiliquid 158 14.3 Liquidhelium-4:ABoseliquid? 163 14.4 Realimperfectgases 164 15 Statisticsunderextremeconditions 169 15.1 SuperfluidstatesinFermi–Diracsystems 169 15.2 Statisticsinastrophysicalsystems 174 AppendixASomeelementarycountingproblems 181 AppendixBSomeproblemswithlargenumbers 183 AppendixCSomeusefulintegrals 187 AppendixDSomeusefulconstants 191 AppendixEExercises 193 AppendixFAnswerstoexercises 199 Index 201 Preface Preface to the first edition Statistical physics is not a difficult subject, and I trust that this will not be found a difficultbook. ItcontainsmuchthatanumberofgenerationsofLancasterstudents havestudiedwithme,aspartoftheirphysicshonoursdegreework.Thelecturecourse wasof20hours’duration,andIhaveaddedcomparativelylittletothelecturesyllabus. Aprerequisiteisthatthereadershouldhaveaworkingknowledgeofbasicthermal physics(i.e.thelawsofthermodynamicsandtheirapplicationtosimplesubstances). ThebookThermalPhysicsbyColinFinninthisseriesformsanidealintroduction. Statisticalphysicshasathousandandonedifferentwaysofapproachingthesame basic results. I have chosen a rather down-to-earth and unsophisticated approach, withoutIhopetotallyobscuringtheconsiderableinterestofthefundamentals.This enablesapplicationstobeintroducedatanearlystageinthebook. As a low-temperature physicist, I have always found a particular interest in sta- tisticalphysics,andespeciallyinhowtheabsolutezeroisapproached.Ishouldnot, therefore,apologizeforthelow-temperaturebiasinthetopicswhichIhaveselected fromthemanypossibilities. Withoutburdeningthemwithanyresponsibilityformycompetence,Iwouldlike toacknowledgehowmuchIhavelearnedinverydifferentwaysfrommyfirstthree ‘bosses’asatraineephysicist:BrianPippard,KeithMacDonaldandSydneyDugdale. More recently my colleagues at Lancaster, George Pickett, David Meredith, Peter McClintock,ArthurCleggandmanyothershavedonemuchtokeepmeontherails. Finally,butmostofall,IthankmywifeJoanforherencouragement. A.M.Guénault 1988 Preface to the second edition Some new material has been added to this second edition, whilst leaving the organization of the rest of the book (Chapters 1–12) unchanged. The new chapters aim to illustrate the basic ideas in three rather distinct and (almost) independent ways. Chapter 13 gives a discussion of chemical thermodynamics, including something about chemical equilibrium. Chapter 14 explores how some interactingsystemscanstillbetreatedbyasimplestatisticalapproach,andChapter15 looks at two interesting applications of statistical physics, namely superfluids and astrophysics. ix x Preface Thebookwill,Ihope,beusefulforuniversitycoursesofvariouslengthsandtypes. Severalexamplesfollow: 1. Basic general course for physics undergraduates (20–25 lectures): most of Chapters1–12,omittinganyofChapters7,10,11and12iftimeisshort; 2. Short introductory course on statistical ideas (about 10 lectures): Chapters 1, 2 and3possiblywithmaterialaddedfromChapters10and11; 3. Following (2), a further short course on statistics of gases (15 lectures): Chapters4–6 and 8–9, with additional material available from Chapter 14 and 15.2; 4. Forchemicalphysics(20lectures):Chapters1–7and10–13; 5. Asanintroductiontocondensedmatterphysics(20lectures):Chapters1–6,8–12, 14,15.1. In addition to those already acknowledged earlier, I would like to thank Keith Wigmore for his thorough reading of the first edition and Terry Sloan for his considerableinputtomyunderstandingofthematerialinsection15.2.1. A.M.Guénault 1994 Preface to the revised and enlarged second edition ThisthirdeditionofStatisticalPhysicsfollowstheorganizationandpurposeofthe secondedition,withcomparativelyminorupdatingandchangestothetext.Ihopeit continuestoprovideanaccessibleintroductiontothesubject,particularlysuitablefor physicsundergraduates.Chaptersummarieshavebeenaddedtothefirstnine(basic) chapters,inordertoencouragestudentstorevisetheimportantideasofeachchapter– essentialbackgroundforaninformedunderstandingoflaterchapters. A.M.Guénault 2007 Preface xi A SURVIVAL GUIDE TO STATISTICAL PHYSICS Chapter 1Assembly of NN identical particles volumeVVV, in thermal equilibrium at temperature T are the particles weakly interacting? YES NO gaseous particles? Chapter 12 or 14 could help orr read a thicker book orrgive up! NO YES Chapters 2,3 Chapters 4,5 use Boltzmann statistics is occupation number of each statef<<1? nnjj= NZexp (–εεj/kkkBTTT) i.e. isA=NV(2(cid:2)Mh2kkkTTT(3/2<<1? partition function: B Z=Σ(–εεj/kkkBTTT) all YES NO states Chapters 6,7 is ΨAor S? use MB statistics F=––NkkkBTlnZ f(ε) =NZexp (–ε/kkkBTTT) A S (2(cid:2)MkkkT(3/2 Z = V B h2 Chapter 8 Chapter 9 for a monatomic gas use FD statistics use BE statistics f(ε) = 1 f(ε)= 1 exp {(ε –(cid:2))/kkkT} + 1 Bexp {ε/kkkT} – 1 B B F=–kkkBTln(NZN( asppipnl ipeas rttoic oledsd (-ehlaelcft irnotnesg,ral asapptoipnml ipes,as r4ttHoic ezl)ee sSr oe( sto oBrm i=ne1t ec igofrldal 3He, nucleons, some cold no particle conservation atoms) (photons, phonons) 1 Basic ideas Thereisanobviousproblemaboutgettingtogripswithanunderstandingofmatterin thermalequilibrium.Letussupposeyouareinterested(asadesignerofsaucepans?) in the thermal capacity of copper at 450K. On the one hand you can turn to ther- modynamics, but this approach is of such generality that it is often difficult to see thepoint.Relationshipsbetweentheprincipalheatcapacities,thethermalexpansion coefficient and the compressibility are all very well, but they do not help you to understandtheparticularmagnitudeandtemperaturedependenceoftheactualheat capacity of copper. On the other hand, you can see that what is needed is a micro- scopicmechanicalpictureofwhatisgoingoninsidethecopper.However,thispicture becomesimpossiblydetailedwhenonestartstodiscussthelawsofmotionof1024 orsocopperatoms. Theaimofstatisticalphysicsistomakeabridgebetweentheover-elaboratedetail ofmechanicsandtheobscuregeneralitiesofthermodynamics.Inthischapterweshall lookatonewayofmakingsuchabridge.Mostreaderswillalreadybefamiliarwith thekinetictheoryofidealgases.Thetreatmentgivenherewillenableustodiscuss a much wider variety of matter than this, although there will nevertheless be some limitationstothetrafficthatcantravelacrossthebridge. 1.1 THEMACROSTATE The basic task of statistical physics is to take a system which is in a well-defined thermodynamic state and to compute the various thermodynamic properties of that systemfroman(assumed)microscopicmodel. The‘macrostate’isanotherwordforthethermodynamicstateofthesystem.Itis aspecificationofasystemwhichcontainsjustenoughinformationforitsthermody- namicstatetobewelldefined,butnomoreinformationthanthat.Asoutlinedinmost booksonthermalphysics(e.g. Finn’sbookThermalPhysics inthisseries), forthe simplecaseofapuresubstancethiswillinvolve: • thenatureofthesubstance–e.g.naturalcopper; • theamountofthesubstance–e.g.1.5moles; 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.