ebook img

Statistical Modelling by Exponential Families PDF

297 Pages·2019·2.55 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Modelling by Exponential Families

StatisticalModellingbyExponentialFamilies Thisbookisareadable,digestibleintroductiontoexponentialfamilies,encompassing statisticalmodelsbasedonthemostusefuldistributionsinstatisticaltheory,suchas thenormal,gamma,binomial,Poisson,andnegativebinomial.Stronglymotivatedby applications,itpresentstheessentialtheoryandthendemonstratesthetheory’s practicalpotentialbyconnectingitwithdevelopmentsinareassuchasitemresponse analysis,socialnetworkmodels,conditionalindependenceandlatentvariable structures,andpointprocessmodels.Extensionstoincompletedatamodelsand generalizedlinearmodelsarealsoincluded.Inaddition,theauthorgivesaconcise accountofthephilosophyofPerMartin-Lo¨finordertoconnectstatisticalmodelling withideasinstatisticalphysics,suchasBoltzmann’slaw.Writtenforgraduate studentsandresearcherswithabackgroundinbasicstatisticalinference,thebook includesavastsetofexamplesdemonstratingmodelsforapplicationsandnumerous exercisesembeddedwithinthetextaswellasattheendsofchapters. ROLF SUNDBERG isProfessorEmeritusofStatisticalScienceatStockholm University.Hisworkembracesboththeoreticalandappliedstatistics,including principlesofstatistics,exponentialfamilies,regression,chemometrics,stereology, surveysamplinginference,molecularbiology,andpaleoclimatology.In2003,hewon (withM.Linder)theawardforbesttheoreticalpaperintheJournalofChemometrics fortheirworkonmultivariatecalibration,andin2017hewasnamedStatisticianofthe YearbytheSwedishStatisticalSociety. INSTITUTE OF MATHEMATICAL STATISTICS TEXTBOOKS EditorialBoard NancyReid(UniversityofToronto) RamonvanHandel(PrincetonUniversity) XumingHe(UniversityofMichigan) SusanHolmes(StanfordUniversity) ISBAEditorialRepresentative PeterMu¨ller(UniversityofTexasatAustin) IMSTextbooksgiveintroductoryaccountsoftopicsofcurrentconcernsuitablefor advancedcoursesatmaster’slevel,fordoctoralstudentsandforindividualstudy.They aretypicallyshorterthanafullydevelopedtextbook,oftenarisingfrommaterial createdforatopicalcourse.Lengthsof100–290pagesareenvisaged.Thebooks typicallycontainexercises. IncollaborationwiththeInternationalSocietyforBayesianAnalysis(ISBA), selectedvolumesintheIMSTextbooksseriescarrythe“withISBA”designationatthe recommendationoftheISBAeditorialrepresentative. OtherBooksintheSeries(*withISBA) 1. ProbabilityonGraphs,byGeoffreyGrimmett 2. StochasticNetworks,byFrankKellyandElenaYudovina 3. BayesianFilteringandSmoothing,bySimoSa¨rkka¨ 4. TheSurprisingMathematicsofLongestIncreasingSubsequences,byDanRomik 5. NoiseSensitivityofBooleanFunctionsandPercolation,byChristopheGarban andJeffreyE.Steif 6. CoreStatistics,bySimonN.Wood 7. LecturesonthePoissonProcess,byGu¨nterLastandMathewPenrose 8. ProbabilityonGraphs(SecondEdition),byGeoffreyGrimmett 9. IntroductiontoMalliavinCalculus,byDavidNualartandEula`liaNualart 10. AppliedStochasticDifferentialEquations,bySimoSa¨rkka¨andArnoSolin 11. *ComputationalBayesianStatistics,byM.Anto´niaAmaralTurkman,Carlos DanielPaulino,andPeterMu¨ller 12. StatisticalModellingbyExponentialFamilies,byRolfSundberg Statistical Modelling by Exponential Families ROLF SUNDBERG StockholmUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108476591 DOI:10.1017/9781108604574 ©RolfSundberg2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedandboundinGreatBritainbyClaysLtd,ElcografS.p.A. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloguing-in-Publicationdata Names:Sundberg,Rolf,1942–author. Title:Statisticalmodellingbyexponentialfamilies/RolfSundberg(StockholmUniversity). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2019.| Series:InstituteofMathematicalStatisticstextbooks;12| Includesbibliographicalreferencesandindex. Identifiers:LCCN2019009281|ISBN9781108476591(hardback:alk.paper)| ISBN9781108701112(pbk.:alk.paper) Subjects:LCSH:Exponentialfamilies(Statistics)–Problems,exercises,etc.| Distribution(Probabilitytheory)–Problems,exercises,etc. Classification:LCCQA276.7.S862019|DDC519.5–dc23 LCrecordavailableathttps://lccn.loc.gov/2019009281 ISBN978-1-108-47659-1Hardback ISBN978-1-108-70111-2Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. v ToMargareta, andtoPer; celebrating50years Contents Examples ix Preface xii 1 WhatIsanExponentialFamily? 1 2 ExamplesofExponentialFamilies 6 2.1 ExamplesImportantfortheSequel 6 2.2 ExamplesLessImportantfortheSequel 15 2.3 Exercises 21 3 RegularityConditionsandBasicProperties 24 3.1 RegularityandAnalyticalProperties 24 3.2 LikelihoodandMaximumLikelihood 31 3.3 AlternativeParameterizations 36 3.4 SolvingLikelihoodEquationsNumerically 45 3.5 ConditionalInferenceforCanonicalParameter 46 3.6 CommonModelsasExamples 50 3.7 CompletenessandBasu’sTheorem 59 3.8 MeanValueParameterandCrame´r–Rao(In)equality 61 4 AsymptoticPropertiesoftheMLE 64 4.1 LargeSampleAsymptotics 64 4.2 SmallSampleRefinement:SaddlepointApproximations 70 5 TestingModel-ReducingHypotheses 75 5.1 ExactTests 76 5.2 Fisher’sExactTestforIndependence,Homogeneity,Etc. 80 5.3 FurtherRemarksonStatisticalTests 84 5.4 LargeSampleApproximationoftheExactTest 86 5.5 AsymptoticallyEquivalentLargeSampleTests 90 5.6 APoissonTrickforDerivingTestStatistics 94 vi Contents vii 6 Boltzmann’sLawinStatistics 100 6.1 MicrocanonicalDistributions 100 6.2 Boltzmann’sLaw 102 6.3 HypothesisTestsinaMicrocanonicalSetting 108 6.4 StatisticalReduncancy 109 6.5 AModellingExerciseintheLightofBoltzmann’sLaw 114 7 CurvedExponentialFamilies 118 7.1 IntroductoryExamples 118 7.2 BasicTheoryforMLEstimationandHypothesisTesting 124 7.3 StatisticalCurvature 129 7.4 MoreonMultipleRoots 131 7.5 ConditionalInferenceinCurvedFamilies 136 8 ExtensiontoIncompleteData 143 8.1 Examples 143 8.2 BasicProperties 147 8.3 TheEMAlgorithm 150 8.4 Large-SampleTests 155 8.5 IncompleteDatafromCurvedFamilies 155 8.6 BloodGroupsunderHardy–WeinbergEquilibrium 156 8.7 HiddenMarkovModels 159 8.8 GaussianFactorAnalysisModels 161 9 GeneralizedLinearModels 164 9.1 BasicExamplesandBasicDefinition 164 9.2 ModelswithoutDispersionParameter 169 9.3 ModelswithDispersionParameter 175 9.4 ExponentialDispersionModels 181 9.5 Quasi-Likelihoods 183 9.6 GLMsversusBox–CoxMethodology 184 9.7 MoreApplicationAreas 186 10 GraphicalModelsforConditionalIndependenceStructures 191 10.1 GraphsforConditionalIndependence 192 10.2 GraphicalGaussianModels 195 10.3 GraphicalModelsforContingencyTables 201 10.4 ModelsforMixedDiscreteandContinuousVariates 205 11 ExponentialFamilyModelsforSocialNetworks 210 11.1 SocialNetworks 210 11.2 TheFirstModelStage:BernoulliGraphs 211 11.3 MarkovRandomGraphs 212 viii Contents 11.4 IllustrativeToyExample,n=5 218 11.5 BeyondMarkovModels:GeneralERGMType 225 12 RaschModelsforItemResponseandRelatedModels 228 12.1 TheJointModel 229 12.2 TheConditionalModel 231 12.3 TestingtheConditionalRaschModelFit 234 12.4 RaschModelConditionalAnalysisbyLog-LinearModels 239 12.5 RaschModelsforPolytomousResponse 240 12.6 FactorAnalysisModelsforBinaryData 241 12.7 ModelsforRankData 243 13 ModelsforProcessesinSpaceorTime 246 13.1 ModelsforSpatialPointProcesses 246 13.2 TimeSeriesModels 254 14 MoreModellingExercises 258 14.1 GenotypesunderHardy–WeinbergEquilibrium 258 14.2 ModelforControlledMultivariateCalibration 259 14.3 RefindingsofRingedBirds 259 14.4 StatisticalBasisforPositronEmissionTomography 262 AppendixA StatisticalConceptsandPrinciples 265 AppendixB UsefulMathematics 268 B.1 SomeUsefulMatrixResults 268 B.2 SomeUsefulCalculusResults 269 Bibliography 271 Index 278 Examples 1.1 ThestructurefunctionforrepeatedBernoullitrials 4 2.1 Bernoullitrialsandthebinomial 6 2.2 Logisticregressionmodels 7 2.3 Poissondistributionfamilyforcounts 7 2.4 Themultinomialdistribution 8 2.5 MultiplicativePoissonandotherlog-linearmodels 9 2.6 ‘Timetofirstsuccess’(geometricdistribution) 10 2.7 Exponentialandgammadistributionmodels 10 2.8 Asamplefromthenormaldistribution 11 2.9 Gaussianlinearmodels 11 2.10 Themultivariatenormaldistribution 12 2.11 Covarianceselectionmodels 13 2.12 Exponentialtiltingfamilies 14 2.13 FiniteMarkovchains 15 2.14 VonMisesandFisherdistributionsfordirectionaldata 16 2.15 Maxwell–Boltzmannmodelinstatisticalphysics 17 2.16 TheIsingmodel 19 3.1 MarginalityandconditionalityforGaussiansample 41 3.2 TwoPoissonvariates 47 3.3 ConditionalinferenceforGaussiansample,cont’d 48 3.4 Bernoullitrials,continuedfromExample2.1 50 3.5 Logisticregression,continuedfromExample2.2 50 3.6 Conditionalinferenceinlogisticregression 51 3.7 Poissonsample,continuedfromExample2.3 52 3.8 MultiplicativePoissonmodel,continuedfromExample2.5 52 3.9 Exponentialandgamma,continuedfromExample2.7 53 3.10 AGaussiansample,continuedfromExample2.8 54 3.11 Themultivariatenormal,continuedfromExample2.10 55 3.12 Covarianceselectionmodels,continued 55 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.