ebook img

Statistical Modeling of Phenotypic Plasticity under Abiotic Stress in Triticum durum L. and Triticum PDF

31 Pages·2017·2.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Modeling of Phenotypic Plasticity under Abiotic Stress in Triticum durum L. and Triticum

agronomy Article Statistical Modeling of Phenotypic Plasticity under Abiotic Stress in Triticum durum L. and Triticum aestivum L. Genotypes AbdullahA.Jaradat 1 UnitedStatesDepartmentofAgriculture–AgriculturalResearchService(USDA-ARS),IowaAvenue,Morris, MN56267,USA;[email protected];Tel.:+1-320-585-8441 2 DepartmentofAgronomyandPlantGenetics,UniversityofMinnesota,803IowaAvenue,Morris,MN 56267,USA (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:19July2018;Accepted:2August2018;Published:4August2018 Abstract: Futurechallengestotheroleofdurumandbreadwheatinglobalfoodsecuritywillbe shapedbytheirpotentialtoproducelargeryieldsandbetternutritionalquality,whileincreasingly adaptingtomultiplebioticandabioticstressesintheviewofglobalclimatechange. Thereisadearth of information on comparative assessment of phenotypic plasticity in both wheat species under long-termmultipleabioticstresses. Phenotypicplasticitiesoftwodurumandbreadwheatgenotypes wereassessedunderincreasingabioticandedaphicstressesforsixyears. Combinationsofnormal andreducedlengthofgrowingseasonandpopulationdensity,withorwithoutrotation,generated increasinglevelsofcompetitionforresourcesandimpactedphenotypicplasticityofseveralplant andyieldattributes,includingproteinandmicronutrientscontents. Allthephenotypicplasticity (PPs)estimates,exceptfortheC:NratioinbothgenotypesandgrainproteincontentinT.aestivum genotype,wereimpactedbyabioticstressesduringthesecondstressphase(PSII)comparedwiththe first(PSI);whereas,covariateeffectswerelimitedtoafewPPs(e.g.,biomass,populationdensity, fertiletillers,grainyield,andgrainproteincontent). Discriminationbetweenfactorlevelsdecreased from abiotic phases > growth stages > stress treatments and provided selection criteria of trait combinations that can be positively resilient under abiotic stress (e.g., spike harvest and fertility indicescombinedwithbiomassandgrainyieldinbothgenotypes). Validationandconfirmatory factormodelsandmultiwayclusteranalysesrevealedmajordifferencesinphenotypicplasticities betweenwheatgenotypesthatcanbeattributedtodifferencesinploidylevel,lengthofdomestication history,orconstitutivedifferencesinresourcesallocation. Discriminantanalyseshelpedtoidentify genotypic differences or similarities in the level of trait decoupling in relation to the strength of theircorrelationandheritabilityestimates. Thisinformationisusefulintargetedimprovementof traits directly contributing to micronutrient densities, yield components, and yield. New wheat ideotype(s)canbedesignedforlargergrainyieldpotentialunderabioticstressbymanipulating yieldcomponentsthataffectkernelsm−2(e.g.,numberoftillers,numberoffloretsperspikelet,and eventuallyspikefertilityandharvestindices)withoutimpactingnutrientdensitiesandkernelweight, thusraisingharvestindexbeyonditscurrentmaximum. Keywords: abioticstress;micronutrients;latentvariables;plasticity;wheat;yieldcomponents 1. Introduction Thedramatictransformationofwheatproductionduetounprecedentedproductivitygrowth fromtheGreenRevolutionbenefitedbothproducersandconsumersofwheatthroughlowproduction costsandlowfoodprices[1]. However,futurechallengestotheroleofwheatinglobalfoodsecurity willbeshapedbyitspotentialtoproducelargeryieldsandbetternutritionalquality,whileincreasingly Agronomy2018,8,139;doi:10.3390/agronomy8080139 www.mdpi.com/journal/agronomy Agronomy2018,8,139 2of31 withstandingmultiplebioticandabioticstresses[2,3].Slowingproductivitygrowth,whichiscausedby bioticandabioticstresses,isfurthercomplicatedbychangingconsumptionpatternsandthegrowing demand for diverse and more nutritious wheat products in the developing world [1,4]. Average annualgrowthratefortheUnitesStates(US)andCanadaduringthelast15yearswas1.65%witha negativeareagrowthrateof−1.25%,negativeconsumptionof−1.06%,andamodestaverageyieldof 2.97Mgha−1[1]. Wheatgenotypeswithimprovedadaptationtoabioticstressesarerequiredtosatisfyincreasing demandformorequantityandbetterqualityofwheatproducts[2],especiallyproteincontentand micronutrientdensity[5]. Renewedinterestinphenotypicplasticity(PP)inagronomicresearchled tofreshinsightsintothecomplexrelationshipsamongyieldcomponents[6,7];and,theirassociation with phenological and architectural traits, expressed, respectively, by growing degree days, GDD; and,fractaldimension,Do[8,9]. Toassessthebenefitorcostofplasticityinwheat,itisimperativeto estimatetherelationshipbetweenatraitplasticityandgrainyieldperse,aswellasothertraitsthat areassociatedwithgrainyield[10,11]. Grainyielddependslargelyonresourceallocationtodifferent partsofthewheatplant[12,13]. Inturn,resourceallocationmayinfluencenearlyallmajorstructures and functions of the wheat plant; is affected by a range of interacting physiological pathways; is temporallyvariable;and,interactswithseveralenvironmentalfactors[14]. Remarkably,largediversity ofphenotypicallyplasticstrategiesevolvedinresponsetochangesinresourceavailabilitycaused eitherbyclimatechangeormanagementpractices[15]. A wide range of phenotypically plastic strategies evolved in response to changes in resource availability forT. durum under Mediterraneanclimate [4,16] andfor T. aestivum under continental climate[17,18].Underbothclimates,naturalselectionusuallyfavoredtheevolutionofaphenotypically plastic resource allocation when the optimal resource allocation strategy changes due to resource availability[12].Differencesbetweendurumandbreadwheat,whicharemainlyattributedtoevolution under domestication, intensity of breeding and selection [16], and eco-geographical adaption (i.e., Mediterranean vs. Continental) [10,19], have been documented in a few studies [20]. However, assessmentofbiomass,andpotentialgrainyieldanditscomponents(e.g.,tillers,kernelsm−2 and 1000-kernel weight) in response to abiotic stresses, such as water deficit [21] and micronutrient deficiencies[22],areofincreasinginteresttowheatscientists. Grainyieldofwheatunderabioticstress canbeexplainedbytraitsthatarefullyindependentofthespecies(e.g.,durumandbreadwheat)or genotypicresponsetostressenvironment[19,20,23]; therefore,itisimportanttoproperlyseparate plasticity of constitutive (e.g., kernel weight) from adaptive (e.g., kernels m−2), maladaptive (e.g., plantheight),orneutral(e.g.,daystomaturity)traitsinsearchforhighyieldingwheatunderabiotic stress. High-yieldingwheatgenotypesareexpectedtoexhibitstrongPP,particularlyinnumberof fertiletillersandspikesize. Alternatively,wheatgenotypes(andspecies,e.g.,einkorn,emmer,orspelt) withahighsurvivalrateunderincreasingabioticstress,butwithlowPP,mightbeofvaluetofarmers underfutureclimatechange[17,19,24]. Phenotypicplasticity,asanantipodetostability,isamechanismbywhichsingleplantsinacrop adjusttheirexpressedtraitvaluesinarchitecturalandphysiologicalfunctions,therebyresponding dynamicallytoabioticstressesthatarecausedbyresource(in)availability,mainlylight,water,and nutrients[10,25–27]. TheclassicalconceptofPP[28]indicatesthatarangeofphenotypesisproduced by a single genotype under varying environmental conditions. However, the ability of different genotypes(e.g.,inalandrace)thatcanassumethesamephenotypeisanalternativeformofPP[29]. In thiscase,apopulationmaymaintainapracticallevelofgeneticdiversitywhileexhibitingarelatively similar level of phenotypic expression under varying field condition. Additionally, plasticity at a populationlevelmaybeusedasastatisticalmeasureofaveragedifferencesamongenvironments acrossgenotypes[19,30]. Nevertheless,whenexpressedatapopulationlevel,plasticityisastatistical measureofhowtheacross-genotypesphenotypicmeanofatraitchangeswithabioticstress[30]. Phenotypicplasticityofwheatplantsinresponsetoabioticstressesisimportantforadaptingtoa changingclimate;therefore,futurewheatgenotypesneedtobemoreflexibleandadaptabletoabiotic Agronomy2018,8,139 3of31 stressesandexhibitlargerlevelsofplasticitytoenvironmentaldiversity[4,5,17]. Wheatplantsunder drylandproductionsystemsexperiencecomplexmultidimensionalandspatiotemporalenvironments, therefore,wheatscientistsarekeenlyinterestedinunderstandingthemechanismsofplantresponseto singleandmultipleabioticstresses[20,24,31]. Resourcelimitationsduetoabioticstress,inadditionto fieldspatialheterogeneity,impactwheatyield,duetointra-populationcompetition[32]. However, commonoccurrenceofinteractions(i.e.,non-additivity)betweenplantresponsestoabioticstress(e.g., limitingwater,light,andnutrientsresources)[8],andthecomplexityandtrait-specificmechanismsof suchresponsesmakeitdifficulttoextrapolatefromsingletomultipleabioticstressscenarios[9,33]. Additionally,recentempiricalstudiesexploringtheeffectsofgrowthstageonplasticitysuggestedthat aplasticresponseatanearliergrowthstage(e.g.,nutrientstressatseedlingstage)mightadjust(in magnitudeordirection)theabilityofaplantorpopulationtorespondtofutureabioticstressatalatter growthstage[21,22,33]. Thewheatphenotypeisadynamicandplasticsystemofsuccessiveprocessesoforganinitiation, differentiation, resource capture, growth, reproduction, recycling of internal carbon and nutrient resources (i.e., C:N ratio as indicator of their coupling, yield), and senescence [4,7,18,34]. The remarkable stability of this performance across diverse environments and population densities in the absence of physiological stresses is a result of adaptive plasticity, or compensatory growth, of sequentiallyinitiatedandinter-dependentyieldcomponents[6,7,35]. Recentreports[7,22]attributed thestabilityofwheatyieldtogreaterplasticityofitscomponenttraits,especiallyharvestindex(HI), which is approaching its physiological limits [35,36]. Since the early 1990s, almost no systematic progressinHIwasachieved;therefore,futureyieldgainswilldependmoreonincreasedbiomass, whichdemonstratedacloseassociationwithhighergrainyield[3,19,24]. Alargermagnitudeofassociationbetweenyieldplasticityandmaximumgrainyield,asopposed toamuchsmalleronethatisassociatedwithminimumgrainyield,indicatesthatlargerplasticity isfavoredunderoptimalconditions,withoutayieldpenaltyunderlow-yieldingconditions[11,37]; thus,negatingtheclassicalattitudetowardslargephenotypicdiversityasanegativetraitbecause ofitsassociationwithlowgrainyieldunderlow-yieldingconditions[38]. Nevertheless,genotypes with higher yield potential generally express their advantage under a wide range of suboptimal environments [39]. Large grain yield plasticity is often associated with short plants, less lodging, morekernelsm−2,lowergrainproteincontent(grainproteincontent),latematurity,andlargekernel weight[7,37]. Associationsbetweenplasticityestimatesofthesetraitsaretypically,butnotalways, positive. Inthecaseofdurumandbreadwheat,andregardlessofcleardifferencesbetweenthese speciesinkernelsm−2,andkernelweight,theiryieldresponsestoabioticstressareindependentof thelatterandareexclusivelymediatedbytheformeryieldcomponent[40]. Recentadvancesinphenotypingmadeitpossibletostreamlinequantitativemeasurementsand qualitativedescriptionoflargenumbersofcropplantsandtheiryieldcomponents[29]. Thiswas achieveddespitenegativerelationshipsbetweenphenotypicplasticityandheritabilityestimatesof yieldcomponentsduetothecollectiveeffectsofstrongenvironmentalimpact,geneticandphysiological controls, and evolutionary constraints [36,41], which may restrict their value in breeding [16] and agronomicapplications[41]. Insuchcase,phenotypicplasticity,asameasureofhowawheatgenotype mayrespondtotheenvironment,couldimpactimportantqualitytraits,suchasproteincontentand micronutrientsdensity[11,42],especiallyofhigh-yieldingwheatgenotypes[43]. Objectivesofthisstudywereto(1)conductacomprehensiveassessmentofdifferencesbetweena T.durumandaT.aestivumgenotypeatthereproductiveandfullmaturitystages;(2)estimatevariance components, PP, and their heritability estimates for yield, yield components, and micronutrients; (3)buildcalibrationandvalidationmodelsformicronutrientdensitiesunderabioticstresses; and, (4) estimate regression and correlation coefficients in confirmatory factor analyses to integrate the effectsatthestart(nostress)andend(extremestress)ofabioticstresssix-yearfieldexperimentfor eachwheatgenotype. Agronomy2018,8,139 4of31 2. MaterialsandMethods Amulti-year(2006–2011),multi-species(twoTriticumspp. andtwogenotypeseachofCarthemus tinctoriusL.,CiceraerietinumL.,Glysinmax(L.)Merr.,andZeamaizeL.)fieldexperimentwasconducted toevaluateintra-andinter-specificvariationunderabioticstress[43]. Thispartofthestudyreportson thephenotypicplasticityofonegenotypeeachofTriticumaestivumandT.durumspeciesunderthree levelsofabioticstressascomparedtono-stresscontrolduringsixyearsoffieldstudies(Table1). Table1. Designofafactorialfieldexperimentevaluatingdurum(T.durum;cv. “Alsen”)andbread (T.aestivum;cv.“Lebsock”)wheatgenotypesinarandomizedcompleteplotdesign,includingabiotic stressphases,treatments,factors,meteorologicaldata,andexperimentalunitsforsixyears(2006–2011). Factors AbioticStressTreatments Stressphase(SP) SPI(2006–2008) SPII(2009–2011) Normallengthofgrowingseason/Normal Normallengthofgrowingseason/25%Higher populationdensity(NN,Control) populationdensitythannormal(NH) 25%Shortergrowingseasonthan 25%Shortergrowingseasonthannormal/25% normal/Normalpopulationdensity(SN) Higherpopulationdensitythannormal(SH) Croprotation Continuouswheat Wheatrotatedwithsoybean Genotypes/cultivars T.aestivum,cv.“Alsen”andT.durum,cv.“Lebsock” Mainplotdimensions(m) 6×12 Samplingsub-plots(m2) 0.5 SowingJuliandate 110±5 Samples/genotype/year 80–100 Variables Year Weathervariables;100years 2006 2007 2008 2009 2010 2011 (mean±SD) Rainfall,mm(589±87) 460 550 490 450 570 550 Growingdegreedays(1930±190) ◦C 1950 1940 1850 1895 1920 1900 Temperature(14.7±2.8)◦C 17.9±4.6 18.2±4.2 16.1±3.9 17.4±4.2 17.8±4.2 17.4±4.7 Photothermalquotient(1.84±0.5) MJm−2day−1◦C−1>0.0 1.47±0.7 1.95±0.8 1.85±0.5 1.75±0.6 1.68±0.5 1.69±0.7 2.1. ExperimentalDesign A factorial experiment in a randomized complete block design, with three replicates, was establishedattheSwanLakeResearchFarm,nearMorris,MN,USA(45◦41’N,95◦48’W,andelevation 370m). Thelandareawaspreviouslyuniformlyplantedwithsoybeantominimizespatialvariability. The major soil series identified within the experimental site was Barnes loam (fine-loamy, mixed, superactivefrigidCalcicHaplotoll)[44]. Averageannualprecipitationinthisregionwas645±53mm andtheaveragetemperaturesduringthewheatgrowingseason(June–August)rangedfrom15.3◦Cin Aprilto26.7◦CinAugust[45]. Fullfactorialcombinationsoftwowheatgenotypes,oneeachofT.aestivum,(cv. “Alsen”)and T.durum,(cv. “Lebsock”);normal(1800±54GDD)andshort(1350±48GDD)lengthofthegrowing season in growing degree days for the period 2006–2011; and, two population densities (normal: 450 live seed m−2 and high: 560 live seed m−2). The same factorial treatment combinations were maintainedoneachexperimentalplotforthefirstthreeyears(2006–2008)toenforceadditionaledaphic stress on the crop (SP I), then wheat was rotated with soybean in a two-year rotation during the nextthreeyears(2009–2011)toreleasetheedaphicstress(SPII),whilemaintainingthesamelevels ofotherabioticstressesasinSPI(Table1). Theshortergrowingseasondeprivedthewheatplants from fully utilizing inputs for full development, and the larger population density created more competitionforinputsandnaturalresources. Landmanagementthatistypicalofwheathusbandry (tillage,plantingdepth,weedcontrol)intheUpperMidwestwasfollowedduringthedurationofthe experiment. Fertilitymanagement(N,P,Krate,method,andtimeofapplication)wasbasedonannual soilanalysis. Samplingsub-plotswereselectedeveryyeartorepresenttheaveragestandineachof wheatgenotype-populationdensity-lengthofthegrowingseason-growthstagefactorialcombinations. Landdimensionsofeachexperimentalplotaccommodatingafactorialcombinationwere6.0×12.0m, with0.3mbetweenrows. Agronomy2018,8,139 5of31 2.2. Covariates Threecovariateswereestimatedormeasuredandusedtoadjustforspatiotemporalvariation intheexperimentalareaduringthedurationofthesix-yearfieldexperiment;theseswere,rowsand columnsofexperimentalplots,photothermalquotient(PTQ;MJm−2day−1◦C−1)priortoanthesis[35], andanintegratedverticalandhorizontalcontinuousmeasurementsofsoilelectricalconductivity(ECa; dSm−1)usingEM-38afteremergenceandafterharvest[43]. Dailyphotothermalquotient(PTQ,theratioofmeandailyincidentshort-waveradiationtomean dailytemperaturemorethan4.5◦C)wascalculated,accordingtothefollowingformulae[46]. PTQ=Solarradiation/(T−4.5)(IfT>10;whereT=dailymeantemperature,◦C),andPTQ=Solar radiation×[(T−4.5)/5.5]/5.5(If4.5<T<10);otherwise,PTQ=0,ifT<4.5. Thegrowingdegreedays(GDD)werecalculated[6]whileusingmaximum(Tmax)andminimum (Tmin)dailytemperaturesandbasetemperature(Tb=4.5◦C)as[{(Tmax+Tmin)/2}−Tb]. 2.3. SamplingProtocol Wheatplantsweremonitoredduringthegrowingseasontodeterminesamplingtimeofbiomass. AbovegroundbiomasswassampledatGS69(i.e.,about15daysaftercompletionofanthesis)and atfullmaturityfrompermanentgeo-referencedsamplingsites(0.15m2 from50cmlengthofthree centraladjacentrows)ineachreplicate,abioticstresstreatment,andyear[47,48]. Numberofplant samplespergenotypeperyearrangedfrom80to100. 2.4. SampleProcessing Eachsamplingsitewasassessedforpopulationdensity(plantsm−2),numberoffertiletillersper unitarea,andnumberandweightofspikes. Ateachsamplingstage,plantsampleswereseparated intostems,leaves,andspikes,thendriedinaforced-airovenat60◦Cfor48handweighed. Grain weightandkernelsm−2 atfullmaturitywereestimatedonthreesub-samplesfromeachsampling siteandaveragedforstatisticalanalysis. Fivespikeswererandomlyselectedfromeachsampling siteandgrowthstagewasusedtoestimatespikeharvestindex(kernelweight/spikeweight)and spikefertilityindex(kernels100-spikelets−1). Therelationshipofgrainyield(anditsPP)withkernel weightisminimal(R2=0.07)whencomparedtothatofkernelsm−2(R2=0.85),therefore,anddueto constitutivedifferencesinkernelweightbetweenT.durumandT.aestivum(>10mgkernel−1),number ofkernelsm−2wasusedinthecurrentstudy.Carbonandnitrogenweredeterminedonkernelsamples asapercentofdryweightusingLECOFP-428analyzer(LECO,St. Joseph,MI,USA),andthenthe C:Nratiowascalculated. PercentnitrogenvalueswereusedtoestimatecrudeproteincontentasN% ×6.25,whilemicronutrients(Cu,Fe,Mn,andZn)determinationwascarriedoutusingsimultaneous ICP-OES(inductivelycoupledplasma-opticalemissionspectroscopy)instrument[42]. 2.5. EstimationofPhenotypicPlasticity The most direct method of estimating PP was used in the current study and it was based on thenormalizedvariationofthephenotype(i.e.,byexpressingatraitvalueunderstressasaratioof itsvalueunderno-stresstreatmentanditcanrangefrom0.0%to100%)[49–51]. However, thePP estimationmethodthatwasusedinthecurrentresearchreturnsresultsthatareequivalenttothose obtainedbyacommonmethodtoquantifyPP,whichinvolvesmodelsofphenotypevs. environment, wheretheparameterestimatesofthefunctionsaretakenasameasureofplasticity[38]. 2.6. DataManagement Adatabasecomprisedofmeasuredandestimatedvariablesonplot-,plant-,andkernel-basisand classifiedbyyear,stressphase,growthstage,andabioticstressfactors,wascompiledfor2006–2011,and wasinspectedforoutliersaswellasforunivariateandmultivariatenormality. Nutrientconcentrations were natural-log transformed; while, other traits were transformed following individual Box-Cox Agronomy2018,8,139 6of31 transformations to optimize normality when necessary, then back-transformed for reporting [52]. Percent change in PP (±SD) was estimated annually for each trait in each wheat genotype as the normalizedabsolutedifferencebetweenitsvalueunderthecontrolanditsvalueundereachofthe remainingabioticstresstreatments(e.g.,|NN−SH|;i.e.,thenormalizedvariationofthephenotype). √ Phenotypic(PCV)andgenotypic(GCV)coefficientsofvariationwereestimatedas( σ2p/sample √ mean)×100;and,( σ2g/samplemean)×100;respectively;then,thenarrow-senseheritabilitywas estimatedforeachtraitash2=σ2g/[σ2g+(σ2ge/e)+(σ2r/re)],whereσ2pisthephenotypicvariance; σ2gisthevarianceofthegenotype,σ2geisthevarianceofthegenotype×environmentinteraction, σ2ristheresidual,eisthenumberofenvironments,andristhenumberofreplicates[13]. 2.7. StatisticalAnalysesandModeling Univariateandmultivariatestatisticalanalysesproceduresappropriateforgenerating,analyzing, and modeling primary or secondary statistics were employed in assessing the effects of single or multipleinteractingfactorsonthePPofagronomictraitsandmicronutrientsduringsixyearsoffield testing. Frequencydistribution,mean±SDforPPofagronomictraitsaveragedoversix-yearswere plottedforeachwheatgenotypeandstressphase;thevarianceaccountedforbydifferencesbetween stressphaseswasestimatedandreported,asadjustedR2calculatedas1−[(1−R2)×n−1]/[n−k− 1];wherenisthenumberofdatapointsandkisthenumberofindependentregressors(i.e.,thenumber ofvariablesinthemodel,excludingtheconstant)[53]. Box-plots(mean±95%confidenceintervals) andmeanseparationwereperformedonphenotypicplasticitiesofbiomass,populationdensity,fertile tillers,grainyield,spikefertilityindex,spikeharvestindex,kernelsm−2,grainproteincontent,and C:N ratio, as well as micronutrients for wheat genotype-stress phase-growth stage-abiotic stress factorialcombinations;meanseparationwasperformedusingTukey’sHSD(p<0.05). Amicronutrient indexwascalculatedaspercentofthelargestcumulativemicronutrientsdensity. Aspartofthestatisticalanalyses,measuredorestimateddatawereadjustedforcovariateeffects, and a generalized linear model (GLM) was used to estimate the effects of main factors and their two-wayandthree-wayinteractionsonplasticityestimatesofagronomictraits,C:Nratio,micronutrient densities,andtheirindex. TheprobabilityofobtaininglargerF-valueforeachtestwasusedasan indicatorofsignificantdifferencesbetweenfactorlevels;inwhichcase,pair-wisesignificantpercent differences(PSPD)wereobtainedfromamatrixofmeanseparationprobabilitiesof[(n×n−1)/2], wherenisthenumberofmeans,usingTukey’sHSD[53]. SummarystatisticsoftheGLMincluded plasticity mean response (and its RMSE) to each factor and adjusted R2. Hierarchical multi-way and multi-variate cluster analyses of standardized data, using Unweighted Pair Group Method withArithmeticMean(UPGMA)linkageandWardvariancemethods[53],aswellasdiscriminant analysis [54], were used to quantify trait relationships and the level of discrimination between sub-factors (i.e., percent correct classification of stress phases, growth stages, and levels of abiotic stress)foreachwheatgenotype. Phenotypicplasticityestimatesforeachfactorintheexperimentwheresubjectedtoin-depth statistical analyses to explore the relationships and dependencies within and among independent (biomass, population density, fertile tillers, grain yield, spike harvest index, spike fertility index, kernels m−2, grain protein content, and C:N ratio) and dependent (Cu, Fe, Mn, and Zn) variables atthebivariateandmultivariate(i.e.,matrix)levels. Dataforindependentvariablesweresubjected to Factor analysis to quantify trait relationships within independent factors; Partial Least Squares Regression(PLSR)wasusedtomodeltherelationshipbetweendependentandindependentvariables; a validation step (using 30% of data) was included to verify the utility of the developed PLSR model [53]. The resulting model coefficients for centered and scaled data were used to construct acorrelationmatrixbetweentheindependentvariablesforeachsub-factor,whichwerethensubjected toaManteltesttoquantifyandtestthesignificanceofrelationshipsatthematrixlevel[55,56].Similarly, correlationmatricesweredevelopedforeachsub-factorwhileusingindependentvariables,andthen were subjected to a Mantel test, as described before. Bivariate functional relationships between Agronomy2018,8,139 7of31 micronutrients within sub-factors were estimated using Major Reduced Axis (RMA), and then a Jackknifed R2 value was estimated for these relationships [57]. A multivariate, non-dimensional distance(MahalanobisD2)wasestimatedbetweensub-factorswithineachfactorintheexperiment andthentestedforsignificance[54]. Threelatentvariableswereproposedtoperformconfirmatory factoranalysisasafinalstepinmultivariateanalysesofC:N,Cu,Fe,Mn,andZntoexplainthelatent variable“Nutrients”. Asecondvariableset(fertiletillers,kernelsm−2,spikefertilityindex,andspike harvestindex)wasusedtoexplainthelatentvariable“YieldComponents”. Athirdsetofvariables Agronomy 2018, 8, x FOR PEER REVIEW 7 of 30 (biomass, grain yield, and population density) was used to explain the latent variable “Yield.” A confirmatothrey efxapcetroimremnto adnedl t(hCenF Ates)tewda fsord seigvneifliocapnecde [f5o4r]. eTahcrhee olafteTn.ta veasrtiiavbulems wanerde pTr.odpuorseudm tou pseirnfogrmqu antitative datasummcoanrfiizrmedatoforyr ftahcetocr oannatlryoslis( NasN a faintaSl PsteIp) ainn dmualttitvhaeriaetne danoaflytshese oefx Cp:eNr,i mCue, nFte,u Msinn, gansdu mZnm toa rizeddata explain the latent variable “Nutrients”. A second variable set (fertile tillers, kernels m−2, spike fertility forthedoubleabioticstressofshortgrowingseasonandhighpopulationdensity(SHatSPII)[58]. index, and spike harvest index) was used to explain the latent variable “Yield Components”. A third set of variables (biomass, grain yield, and population density) was used to explain the latent variable 3. Results “Yield.” A confirmatory factor model (CFA) was developed for each of T. aestivum and T. durum using quantitative data summarized for the control (NN at SP I) and at the end of the experiment using 3.1. Inter-saunmdmInartirzaesdp decaitafi cfoVr athreia dtoiounblien abPihoteinc osttryepssic oPf slhaostrit cgirtoywing season and high population density (SH at SP II) [58]. Frequency distribution, range, and mean ±SD of PP estimates of agronomic traits and micronutr3i.e Rnetssulitns dexassessedontwowheatgenotypesrepresentingT.durumandT.aestivumand then subjected to two stress phases are presented in Figure 1. Included is variance estimates (R2) 3.1. Inter- and Intraspecific Variation in Phenotypic Plasticity accountedforbydifferencesbetweenabioticstressphases. MostPPswerenormallydistributedwhen Frequency distribution, range, and mean ±SD of PP estimates of agronomic traits and stressphaseswerenotconsidered. AfewPPsinT.durumwerenegatively(e.g.,populationdensity)or micronutrients index assessed on two wheat genotypes representing T. durum and T. aestivum and positivelyskewed(e.g.,grainyield,andnutrientindex). SlightlylargernumberofmeanPPswere then subjected to two stress phases are presented in Figure 1. Included is variance estimates (R2) ≤0.75 thaancctohuonsteed wfori tbhy dmiffeearenncPesP bset>we0e.n7 5ab.ioBtioc tshtreossf pthhaesews. Mheosatt PgPse wnoertey npoermsadlliys dpilsatryibeudtead wwhiedne range of PPs(0.40–s0tr.e9s0s )phfoasresb wioemre ansost ,copnospiduerleadti. oAn fedwe PnPssi tiyn, Ta. ndudrumm iwcreoren nuetgraiteivnetlsy. (eT.gh.,e poepsutilmatiaonte dsenfosirtyp) roductive or positively skewed (e.g., grain yield, and nutrient index). Slightly larger number of mean PPs were tillersandgrainyieldhadnarrowranges(0.75–0.95),andastillnarrowerrangewasfoundforspike ≤0.75 than those with mean PPs > 0.75. Both of the wheat genotypes displayed a wide range of PPs fertilityindexinbothgenotypes(0.80–0.92). Largedifferencesbetweenwheatgenotypeswerefound (0.40–0.90) for biomass, population density, and micronutrients. The estimates for productive tillers forkernelsanmd g−r2aiann ydieltdh headsp niakrreowha rravngeesst (i0n.7d5e–0x..95), and a still narrower range was found for spike fertility Frequinednecxy ind biostthr ibgeuntoitoynpess f(o0r.80m–0o.9s2t).P LPasrgde idfiffeferreedncbese tbwetweeeenn bwohtehats gtreensostyppehs awseerse. foEusntdim foart es during PS I exceekderendelst hme−2i rancdo tuhne stepirkpea hratrsvedstu irnidnegx. PS II; however, with a few exceptions (e.g., kernels m−2 Frequency distributions for most PPs differed between both stress phases. Estimates during PS in T. durum). Minimum PPs for PS II (e.g., biomass) or substantially (e.g., population density and I exceeded their counterparts during PS II; however, with a few exceptions (e.g., kernels m−2 in T. kernelsmd−u2ruimn).T M.dinuimruumm) PwPse froer PslSi gIIh (etl.gy., lbairogmearsst)h oar nsutbhsetainrticaolluy n(et.egr., ppaorptusladtiuonr idnegnsPitSy aIn.dT hkeersneelds ifferences contributemd−2t oint hTe. sdmuruamll)R w2e(r≤e 0sl.i2g0h)tlfyo rlabrgieorm thaasns athnedir pcoopunutlearptiaortns ddeunrisnigt yPiSn Ib. oTthhesgee ndioffteyrepnecse.s Also,they contributecdonttoribmueteddi utom the(0 s.m20all> RR2 (2≤0≤.200) .f5o0r )bifoomragsrsa ainndy pioepldul,astipoink deefnesrittyi liint ybointhd geexn,oatynpdesm. Ailcsroo, nthueytr ientindex contributed to medium (0.20 > R2 ≤ 0.50) for grain yield, spike fertility index, and micronutrient index (micronutrientsindexinbothgenotypes);and,tolargevarianceestimates(>0.50)forgrainprotein (micronutrients index in both genotypes); and, to large variance estimates (>0.50) for grain protein contentincbonottehntg ine nbootthy gpeenso,tyapneds, faondr kfoerr kneernlselms m−−22 iinn TT. d.udruumru. m. Figure1.Frequencydistribution(y-axis),range,andmean±SDofphenotypicplasticities(x-axis)of Figure 1. Frequency distribution (y-axis), range, and mean ± SD of phenotypic plasticities (x-axis) of agronomiacgtrroaniotmsiac ntrdaitms aincdr omnicurotrniuetnritesntisn inddeexx eessttimimataetde odn otwnot gwenootgyepneso rteyppreessenrteinpgr Te.s deunrutimn ganTd .Td. urumand T.aestivumaeastnivdumth aennd tshuebn jseucbtjeedctetdo ttow twoos sttrreessss pphhasaesse, esa,ceha ocfh thorfeet hyeraeres.y ears. Agronomy2018,8,139 8of31 3.2. AssessmentofAgronomicandMicronutrientsPPs TeststatisticsthatwerederivedfromresultsofaGLManalysis,levelofsignificance,andpercent significantpair-wisedifferencesbetweensub-factors;phenotypicandgenotypiccoefficientsofvariation andnarrow-senseheritabilityofPPsofagronomictraitsandmicronutrientsofT.aestivumandT.durum wheatgenotypesattributedtofixedsinglefactorsandtheirinteractionsinasix-yearfieldstudyunder abiotic stress are presented in Table 2. The photo-thermal quotient (PTQ) was the most effective covariate, accounting for significant variances (R2, 0.34–0.72) in PPs of agronomic traits, with the exceptionofspikefertilityindex,andkernelsm−2; theintegratedsoilconductivitymeasure(ECa) explainedsignificantportionsofvarianceinfertiletillers(0.21)andgrainyield(0.35);while,thespatial variation,mediatedbycolumnsandrowsofexperimentalplotsascovariates,accountedforsmall (0.25)varianceingrainyield;however,noneofthecovariatesaccountedforsignificantportionsof variancesinmicronutrientsindexorC:Nratio. Agronomy2018,8,139 9of31 Table2. Teststatisticsderivedfromresultsofageneralizedlinearmodelanalysis, levelofsignificanceandpercentsignificantpair-wisecomparisons(PSPD); phenotypic,genotypicvariancecomponentsandnarrowsenseheritabilityestimatesofplasticityestimatesofagronomictraitsandmicronutrientsofT.aestivumand T.durumwheatgenotypesattributedtofixedsinglefactorsandtheirinteractionsina6-yearfieldstudyunderthreeabioticstresslevelsascomparedtonon-stress treatment(*,**,significantatthe5%and1%levelofprobability,respectively,usingTukey’sHSD). Covariates PlasticityofAgronomicTraits PlasticityofC:NandMicronutrients&TheirIndex,MNI BM PD FT GY SFI SHI KNO GPC C:N Cu Fe Mn Zn MNI Varianceexplainedbycovariate(R2) Photothermalquotient(R2) 0.69** 0.56** 0.72** 0.62** 0.25 0.34* 0.09 0.45* 0.05 0.11 0.09 0.07 0.05 0.06 IntegratedECa(HandV) 0.15 0.09 0.21* 0.35* 0.08 0.08 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 GIS(Columns×Rows) 0.14 0.0 0.07 0.25* 0.15 0.11 0.0 0.05 0.0 0.06 0.08 0.0 0.10 0.05 Fixedfactors Teststatistics(Probabilityof>Fduetofixedfactor) Genotypes 0.47 0.83 0.26 0.001 0.001 0.001 0.001 0.01 0.30 0.05 0.009 0.001 0.013 0.02 PSPD - - - 100 100 100 100 100 - 100 100 100 100 100 Stressphases 0.13 0.20 0.05 0.04 0.05 0.05 0.04 0.05 0.98 0.005 0.14 0.68 0.03 0.34 PSPD - - 100 100 100 100 100 100 - 100 - - 100 - Growthstages 0.32 0.05 0.04 0.01 0.08 0.12 0.001 0.01 0.12 0.05 0.04 0.02 0.03 0.001 PSPD 100 100 100 - - 100 100 100 100 100 100 100 Abioticstresses 0.71 0.02 0.05 0.28 0.77 0.51 0.05 0.05 0.003 0.05 0.22 0.30 0.16 0.79 PSPD - 100 33 - - - 30 25 50 17 - - - - Genotypes×Stressphases 0.81 0.26 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.35 0.01 0.88 0.05 PSPD - - 33 67 67 67 67 25 10 67 - 30 - 30 Genotypes×growthstages 0.82 0.05 0.05 0.05 0.05 0.05 0.001 0.01 0.05 0.001 0.05 0.001 0.021 0.001 PSPD - 16 33 50 50 50 75 25 17 83 82 82 83 50 Genotypes×Abioticstresses 0.001 0.05 0.05 0.001 0.001 0.001 0.001 0.01 0.001 0.05 0.001 0.001 0.001 0.001 PSPD 100 7 25 70 64 70 72 50 35 10 50 82 56 72 Growthstage×abioticstresses 0.05 0.03 0.59 0.07 0.11 0.09 0.02 0.08 0.05 0.91 0.05 0.03 0.21 0.21 PSPD 18 18 - - - 50 - 20 - 35 63 - - Growthstage×abioticstress×Genotypes 0.23 0.26 0.05 0.32 0.25 0.19 0.05 0.12 0.05 0.046 0.05 0.011 0.033 0.001 PSPD - - 10 - - - 10 10 35 28 60 25 79 Stressphase×Abioticstress×Genotypes 0.15 0.35 0.05 0.02 0.04 0.02 0.03 0.22 0.37 0.03 0.05 0.05 0.02 0.008 PSPD - - 8 62 53 50 62 - - 52 17 30 30 67 Stressphase×Growthstage×Genotypes 0.55 0.89 0.05 0.19 0.34 0.62 0.50 0.31 0.25 0.011 0.05 0.047 0.05 0.029 PSPD - - 25 - - - - - - 79 30 43 43 50 SummarystatisticsofGeneralizedLinearModelFit MeanofResponse(PPs) 0.68 0.64 0.86 0.88 0.86 0.59 0.82 0.75 0.78 0.67 0.79 0.66 0.75 0.72 RMSE 0.045 0.046 0.022 0.015 0.006 0.022 0.013 0.022 0.035 0.035 0.037 0.044 0.047 0.054 AdjustedR2 0.75 0.82 0.80 0.95 0.95 0.93 0.98 0.79 0.80 0.92 0.76 0.87 0.82 0.69 Percentchangeinphenotypicplasticityestimatesduetoabioticstress(mean±95%confidenceintervals;differencebetweenSHin2011andNNin2006) T.aestivum −36.5(12.8) −22.3(7.7) −27.3(5.6) −32.0(9.5) −25.5(5.0) −12.8(3.8) −15.3(2.8) 3.8(1.9) 4.2(2.0) 5.4(0.9) 6.2(1.8) 8.1(2.8) 5.9(1.4) 6.6(1.5) T.durum −40.2(9.2) −32.8(6.5) −29.6(7.2) −38.3(9.0) −37.2(7.8) −15.2(1.6) −13.8(3.1) 4.6(1.8) 3.4(1.5) 5.0(1.1) 6.2(2.0) 7.5(2.2) 5.5(1.4) 6.2(1.7) PhenotypicCoefficientsofVariation(PCV,%)(2006–2011) T.aestivum 22.9 28.8 29.9 28.6 8.9 6.3 5.2 16.8 3.4 15.2 17.9 10.5 8.3 12.5 Agronomy2018,8,139 10of31 Table2.Cont. Covariates PlasticityofAgronomicTraits PlasticityofC:NandMicronutrients&TheirIndex,MNI T.durum 18.6 28.0 27.5 29.5 9.5 6.5 5.0 15.3 3.0 18.6 19.0 12.5 9.5 13.5 GenotypicCoefficientsofVariation(GCV,%)(2006–2011) T.aestivum 23.3 24.6 25.6 25.4 7.2 5.6 4.9 15.0 3.0 13.8 14.9 8.3 7.9 10.8 T.durum 24.6 23.3 25.3 25.0 8.3 5.9 4.9 14.2 3.0 17.5 12.3 9.5 8.8 11.2 Narrow-senseheritability(h2)(%) T.aestivum 67.5 64.3 62.3 59.8 75.3 88.9 80.5 56.9 89.3 38.9 34.6 48.9 52.8 43.2 T.durum 69.2 65.3 65.5 56.8 77.6 87.0 87.2 58.2 88.6 40.2 35.8 46.3 50.7 42.5

Description:
Department of Agronomy and Plant Genetics, University of Minnesota, 803 . Phenotypic plasticity of wheat plants in response to abiotic stresses is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.