Table Of ContentStatistical Inference, Econometric Analysis
and Matrix Algebra
Bernhard Schipp (cid:129) Walter Krämer
Editors
Statistical Inference,
Econometric Analysis
and Matrix Algebra
Festschrift in Honour of Götz Trenkler
ABC
Editors
Prof.Dr.BernhardSchipp Prof.Dr.WalterKrämer
TUDresden TUDortmund
FakultätWirtschaftswissenschaften FakultätStatistik
ProfessurfürQuantitativeVerfahren,insb. LehrstuhlfürWirtschafts-
Ökonometrie undSozialstatistik
Mommsenstr.12 Vogelpothsweg78
01062Dresden 44221Dortmund
Germany Germany
bernhard.schipp@tu-dresden.de walterk@statistik.tu-dortmund.de
ISBN:978-3-7908-2120-8 e-ISBN:978-3-7908-2121-5
LibraryofCongressControlNumber:2008936140
(cid:2)c 2009Physica-VerlagHeidelberg
Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis
concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,
reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication
orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,
1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations
areliabletoprosecutionundertheGermanCopyrightLaw.
Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not
imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective
lawsandregulationsandthereforefreeforgeneraluse.
Coverdesign:WMXDesignGmbH,Heidelberg
Printedonacid-freepaper
9 8 7 6 5 4 3 2 1
springer.com
Prof.Dr.GötzTrenkler
Preface
ThisFestschriftisdedicatedtoGötzTrenklerontheoccasionofhis65thbirthday.
As can be seen from the long list of contributions, Götz has had and still has
an enormous range of interests, and colleagues to share these interests with. He
is a leading expert in linear models with a particular focus on matrix algebra in
its relation to statistics. He has published in almost all major statistics and matrix
theoryjournals.Hisresearchactivitiesalsoincludeotherareas(likenonparametrics,
statistics and sports, combination of forecasts and magic squares, just to mention
afew).
GötzTrenklerwasborninDresdenin1943.AfterhisschoolyearsinEastGer-
manyandWest-Berlin,heobtainedaDiplomainMathematicsfromFreeUniversity
of Berlin (1970), where he also discovered his interest in Mathematical Statistics.
In1973,hecompletedhisPh.D.withathesistitled:Onadistance-generatingfunc-
tion of probability measures. He then moved on to the University of Hannover to
becomeLecturerandtowriteahabilitation-thesis(submitted1979)onalternatives
totheOrdinaryLeastSquaresestimatorintheLinearRegressionModel,atopicthat
wouldbecomehispredominantfieldofresearchintheyearstocome.
In1983GötzTrenklerwasappointedFullProfessorofStatisticsandEconomet-
ricsattheDepartmentofStatisticsattheUniversityofDortmund,wherehecontin-
uestoteachanddoresearchuntiltoday.Heservedasdeanofthedepartmentfrom
1987to1990anddeclinedanofferfromDresdenUniversityofTechnologyin1993.
HehasbeenvisitingProfessorattheUniversityofCaliforniaatBerkeley,USA,and
theUniversityofTampere,Finland,andisaregularcontributortointernationalcon-
ferencesonmatrixmethodsinstatistics.Currently,heistheCoordinatingEditorof
Statistical Papers, Associate Editor of several other international journals and re-
centlythetwice-in-a-rowrecipientofthebest-teacher-awardofthedepartment.
AmongGötzTrenkler’sextracurricularactivitiesaretennis,chessandthecom-
pilationofauniquecollectionofAphorismsinStatistics,samplesofwhichcanbe
foundatthebeginningofthechaptersofthisbook.Hecertainlywoulddothesci-
entificcommunityagreatservicebyhavingthempublishedatsometime.
Theeditorsaregratefultoallcontributors,manyofwhomarenotonlyscientific
colleaguesbutalsohispersonalfriends.
vii
viii Preface
We express our appreciation for editorial and LATEX-assistance to Sabine Hege-
wald, and in particular to Matthias Deutscher, who managed to edit successfully
almost30manuscriptsthatwerecharacterizedbyagreatvarietyofindividualpref-
erencesinstyleandlayout,andtoAliceBlanckandWernerA.MüllerfromSpringer
Publishingfortheirsupport.
DresdenandDortmund BernhardSchipp
July2008 WalterKrämer
Contents
ListofContributors ................................................ xiii
PartI NonparametricInference
AdaptiveTestsforthec-SampleLocationProblem.................... 3
HerbertBüning
OnNonparametricTestsforTrendDetectioninSeasonalTimeSeries ... 19
OliverMorellandRolandFried
NonparametricTrendTestsforRight-CensoredSurvivalTimes......... 41
SandraLeissen,UweLigges,MarkusNeuhäuser,andLudwigA.Hothorn
PenaltySpecialistsAmongGoalkeepers:ANonparametricBayesian
Analysisof44YearsofGermanBundesliga.......................... 63
BjörnBornkamp,ArnoFritsch,OliverKuss,andKatjaIckstadt
PermutationTestsforValidatingComputerExperiments .............. 77
ThomasMühlenstädtandUrsulaGather
PartII ParametricInference
Exact and Generalized Confidence Intervals in the Common Mean
Problem ....................................................... 85
JoachimHartungandGuidoKnapp
Locally Optimal Tests of Independence for Archimedean Copula
Families ....................................................... 103
JörgRahnenführer
ix
x Contents
PartIII DesignofExperimentsandAnalysisofVariance
OptimalDesignsforTreatment-ControlComparisonsinMicroarray
Experiments.................................................... 115
JoachimKunert,R.J.Martin,andSabineRothe
ImprovingHenderson’sMethod3ApproachwhenEstimatingVariance
ComponentsinaTwo-wayMixedLinearModel...................... 125
RazawalSarrajandDietrichvonRosen
ImplicationsofDimensionalityonMeasurementReliability ............ 143
KimmoVehkalahti,SimoPuntanen,andLauriTarkkonen
PartIV LinearModelsandAppliedEconometrics
Robust Moment Based Estimation and Inference: The Generalized
Cressie–ReadEstimator.......................................... 163
RonC.MittelhammerandGeorgeG.Judge
MoreontheF-testunderNonsphericalDisturbances ................. 179
WalterKrämerandChristophHanck
OptimalEstimationinaLinearRegressionModelusingIncomplete
PriorInformation ............................................... 185
HelgeToutenburg,Shalabh,andChristianHeumann
MinimumDescriptionLengthModelSelectioninGaussianRegression
underDataConstraints .......................................... 201
ErkkiP.LiskiandAnttiLiski
Self-excitingExtremeValueModelsforStockMarketCrashes ......... 209
RodrigoHerreraandBernhardSchipp
ConsumptionandIncome:ASpectralAnalysis ...................... 233
D.S.G.Pollock
PartV StochasticProcesses
ImprovedEstimationStrategyinMulti-FactorVasicekModel.......... 255
S.EjazAhmed,SévérienNkurunziza,andShuangzheLiu
BoundsonExpectedCouplingTimesinaMarkovChain .............. 271
JeffreyJ.Hunter
MultipleSelf-decomposableLawsonVectorSpacesandonGroups:
TheExistenceofBackgroundDrivingProcesses...................... 295
WilfriedHazod
Contents xi
PartVI MatrixAlgebraandMatrixComputations
FurtherResultsonSamuelson’sInequality .......................... 311
RichardWilliamFarebrother
RevisitationofGeneralizedandHypergeneralizedProjectors .......... 317
OskarMariaBaksalary
OnSingularPeriodicMatrices .................................... 325
JürgenGroß
TestingNumericalMethodsSolvingtheLinearLeastSquaresProblem .. 333
ClausWeihs
On the Computation of the Moore–Penrose Inverse of Matrices
withSymbolicElements .......................................... 349
KarstenSchmidt
OnPermutationsofMatrixProducts ............................... 359
HansJoachimWernerandIngramOlkin
PartVII SpecialTopics
SomeCommentsonFisher’sαααIndexofDiversityandontheKazwini
Cosmography ................................................... 369
OskarMariaBaksalary,KaLokChu,SimoPuntanen,andGeorgeP.H.
Styan
UltimatumGamesandFuzzyInformation .......................... 395
PhilipSanderandPeterStahlecker
AreBernstein’sExamplesonIndependentEventsParadoxical? ........ 411
CzesławSte˛pniakandTomaszOwsiany
AClassroomExampletoDemonstrateStatisticalConcepts ............ 415
DietrichTrenkler
SelectedPublicationsofGötzTrenkler................................425
List of Contributors
S.EjazAhmedDepartmentofMathematicsandStatistics,UniversityofWindsor,
401SunsetAvenue,Windsor,ON,CanadaN9B3P4,seahmed@uwindsor.ca
Oskar Maria Baksalary Faculty of Physics, Adam Mickiewicz University, ul.
Umultowska85,61-614Poznan´,Poland,baxx@amu.edu.pl
Björn Bornkamp Fakultät Statistik, Technische Universität Dortmund, 44221
Dortmund,Germany,bornkamp@statistik.tu-dortmund.de
HerbertBüningFreieUniversitätBerlin,14195Berlin,Germany,
Herbert.Buening@fu-berlin.de
Ka Lok Chu Department of Mathematics, Dawson College, 3040 ouest, rue
Sherbrooke,Westmount,QC,CanadaH3Z1A4,ka.chu@mail.mcgill.ca
Richard William Farebrother 11 Castle Road, Bayston Hill, Shrewsbury SY3
0NF,UK,R.W.Farebrother@Manchester.ac.uk
Roland Fried Fakultät Statistik, Technische Universität Dortmund, 44221
Dortmund,Germany,fried@statistik.tu-dortmund.de
Arno Fritsch Fakultät Statistik, Technische Universität Dortmund, 44221
Dortmund,Germany,arno.fritsch@statistik.tu-dortmund.de
Ursula Gather Fakultät Statistik, Technische Universität Dortmund, 44221
Dortmund,Germany,gather@statistik.tu-dortmund.de
Jürgen Groß Carl von Ossietzky Universität Oldenburg, Fakultät V, Institut für
Mathematik,26111Oldenburg,Germany,j.gross@uni-oldenburg.de
Christoph Hanck Department Quantitative Economics, Universiteit Maastricht,
6211LMMaastricht,TheNetherlands,c.hanck@ke.unimaas.nl
Joachim Hartung Fakultät Statistik, Technische Universität Dortmund, 44221
Dortmund,Germany,hartung@statistik.tu-dortmund.de
xiii
Description:This unique collection of essays extends the frontiers of knowledge in econometrics as well as classical fields of statistical inference. Among others, it presents advances in stochastic processes, in the design of experiments and in the analysis of variance. Moreover, several papers on modern matri