ebook img

Statistical Distributions: Applications and Parameter Estimates PDF

176 Pages·2017·3.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Distributions: Applications and Parameter Estimates

Nick T. Thomopoulos Statistical Distributions Applications and Parameter Estimates Statistical Distributions Nick T. Thomopoulos Statistical Distributions Applications and Parameter Estimates NickT.Thomopoulos StuartSchoolofBusiness IllinoisInstituteofTechnology BurrRidge,IL,USA ISBN978-3-319-65111-8 ISBN978-3-319-65112-5 (eBook) DOI10.1007/978-3-319-65112-5 LibraryofCongressControlNumber:2017949365 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland For my wife, my children, and my grandchildren. Preface A statistical distribution is a mathematical function that defines the probable occurrenceofarandomvariableoveritsadmissiblespace.Understandingstatistical distributionsisafundamentalrequisitetoresearchersinalmostalldisciplines.The informedresearcherwillselectthestatisticaldistributionthatbestfitsthedatainthe studyathand.Thisbookgivesadescriptionofthegroupofstatisticaldistributions that have ample application to studies in statistics and probability. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in commonuse.Thisbookdescribeswhenandhowtoapplyeachofthedistributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random vari- ables.Inmoststudies,theparametervaluesarenotknownapriori,andsampledata is needed to estimate the parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This book is easy to read and includes many examples to guide the reader; it will be a highly useful reference to anyone who does statistical and probability analysis. This includes management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, socialscienceresearchers,andstudentsinmanydisciplines. BurrRidge,IL,USA NickT.Thomopoulos vii Acknowledgments Thanks especially to my wife, Elaine Thomopoulos, who encouraged me to write thisbook,andwhogaveconsultationwheneverneeded.DanielSussmanassistedin proofingthetext.Thanksalsotothemanypeoplewhohavehelpedandinspiredme over the years, including some former Illinois Institute of Technology (Illinois Tech) Ph.D. students. I can name only a few here: Emanuel Betinis (National UniversityofHealthScience),FredBock(IITResearchInstitute),DickChiapetta (Chiapetta and Welch), Al Endres (Tampa University), John Garofalakis (Patras University), James Hall (Caywood Schiller Associates), Montira Jantaravareerat (Illinois Tech), Arvid Johnson (St. Francis University), Carol Lindee (Panduit), Anatol Longinow (Illinois Tech), Fotis Mouzakis (Frynon Research), George Resnikoff(CaliforniaStateUniversity),andPaulSpirakis(PatrasUniversity). ix Contents 1 StatisticalConcepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 ProbabilityDistributions,RandomVariables, NotationandParameters. . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ContinuousDistribution. .. . . . .. . . . .. . . . .. . . . .. . . . .. 3 1.4 DiscreteDistributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 SampleDataBasicStatistics. . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 ParameterEstimatingMethods.. . . . .. . . . . .. . . . .. . . . .. 7 1.6.1 Maximum-Likelihood-Estimator(MLE). . . . . . . . . . 8 1.6.2 Method-of-Moments(MoM). . . . . . . . . . . . . . . . . . . 8 1.7 TransformingVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7.1 TransformDatatoZeroorLarger. . . . . . . . . . . . . . . 8 1.7.2 TransformDatatoZeroandOne. . . . . . . . . . . . . . . . 9 1.7.3 ContinuousDistributionsandCov. . . . . . . . . . . . . . . 11 1.7.4 DiscreteDistributionsandLexisRatio. . . . . . . . . . . 11 1.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 ContinuousUniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 ParameterEstimatesfromSampleData. . . . . . . . . . . . . . . . 16 2.4 ParameterEstimatesWhenNoData. . . . . . . . . . . . . . . . . . . 17 2.5 When(a,b)NotKnown. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Exponential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 TableValues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Memory-LessProperty. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 xi xii Contents 3.4 PoissonRelation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 ParameterEstimatefromSampleData. . . . . . . . . . . . . . . . . 26 3.7 ParameterEstimateWhenNoData. . . . . . . . . . . . . . . . . . . 27 3.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Erlang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.5 ParameterEstimatesWhenSampleData. . . . . . . . . . . . . . . 35 4.6 ParameterEstimatesWhenNoData. . . . . . . . . . . . . . . . . . . 36 4.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Gamma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3 GammaFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4 CumulativeProbability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.5 EstimatingtheCumulativeProbability. . . . . . . . . . . . . . . . . 42 5.6 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.7 ParameterEstimatesWhenSampleData. . . . . . . . . . . . . . . 44 5.8 ParameterEstimateWhenNoData. . . . . . . . . . . . . . . . . . . 45 5.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6 Beta. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . 49 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3 StandardBeta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.4 BetaHasManyShapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.5 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.6 ParameterEstimatesWhenSampleData. . . . . . . . . . . . . . . 53 6.7 RegressionEstimateoftheMeanfromtheMode. . . . . . . . . 55 6.8 ParameterEstimatesWhenNoData. . . . . . . . . . . . . . . . . . . 56 6.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7 Weibull. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.3 StandardWeibull. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.4 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.5 ParameterEstimateofγWhenSampleData. . . . . . . . . . . . . 62 7.6 ParameterEstimateof(k ,k )WhenSampleData. . . . . . . . 63 1 2 7.7 ParameterEstimateWhenNoData. . . . . . . . . . . . . . . . . . . 66 7.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Contents xiii 8 Normal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.3 StandardNormal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8.4 HastingsApproximations. . .. . . .. . . . .. . . . .. . . .. . . . .. 71 8.5 TablesoftheStandardNormal. . .. . . . . .. . . . . . .. . . . . .. 72 8.6 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.7 ParameterEstimatesWhenSampleData. . . . . . . . . . . . . . . 74 8.8 ParameterEstimatesWhenNoData. . . . . . . . . . . . . . . . . . . 75 8.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 9 Lognormal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.3 LognormalMode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.4 LognormalMedian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.5 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 9.6 ParameterEstimatesWhenSampleData. . . . . . . . . . . . . . . 81 9.7 ParameterEstimatesWhenNoData. . . . . . . . . . . . . . . . . . . 82 9.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 10 LeftTruncatedNormal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10.3 StandardNormal. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 86 10.4 Left-TruncatedNormal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10.5 CumulativeProbabilityoft. . . . . . . . . . . . . . . . . . . . . . . . . . 87 10.6 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 10.7 ParameterEstimatesWhenSampleData. . . . . . . . . . . . . . . . 91 10.8 LTNinInventoryControl. . . . . . . . . . . . . . . . . . . . . . . . . . . 93 10.9 DistributionCenterinAutoIndustry. . . . . . . . . . . . . . . . . . . 94 10.10 Dealer,RetailerorStore. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.11 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11 RightTruncatedNormal. .. . . . . . . .. . . . . . .. . . . . . .. . . . . . . .. 97 11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.2 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.3 StandardNormal. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 98 11.4 Right-TruncatedNormal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11.5 CumulativeProbabilityofk. . . . . . . .. . . . . . . . . . . . . . . .. . 99 11.6 MeanandStandardDeviationoft. . . . . . . . . . . . . . . . . . . . . 100 11.7 SpreadRatioofRTN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.8 TableValues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.9 SampleData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Description:
This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.