ebook img

Statistical Design And Analysis Of Biological Experiments PDF

281 Pages·2021·4.758 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Design And Analysis Of Biological Experiments

Statistics for Biology and Health Hans-Michael Kaltenbach Statistical Design and Analysis of Biological Experiments Statistics for Biology and Health SeriesEditors MitchellGail,DivisionofCancerEpidemiologyandGenetics,NationalCancer Institute,Rockville,MD,USA JonathanM.Samet,DepartmentofEpidemiology,SchoolofPublicHealth,Johns HopkinsUniversity,Baltimore,MD,USA Statistics for Biology and Health (SBH) includes monographs and advanced text- books on statistical topics relating to biostatistics, epidemiology, biology, and ecology. Moreinformationaboutthisseriesathttp://www.springer.com/series/2848 Hans-Michael Kaltenbach Statistical Design and Analysis of Biological Experiments Hans-MichaelKaltenbach DepartmentofBiosystemsScience andEngineering,ETHZürich Basel,Switzerland ISSN1431-8776 ISSN2197-5671 (electronic) StatisticsforBiologyandHealth ISBN978-3-030-69640-5 ISBN978-3-030-69641-2 (eBook) https://doi.org/10.1007/978-3-030-69641-2 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ForElke Preface This book serves as an introduction to the design and analysis of experiments and usesexamplesfrombiologyandlifesciences.Itisaimedatstudentsandresearchers wantingtogainorrefreshknowledgeofexperimentaldesign.Previousexposureto astandardstatisticsintroductionwouldbehelpful,buttherequiredmaterialisalso reviewedinthefirstchapterstomakethebookself-contained.Mostcalculationsare demonstratedinR,butshouldbeeasilytransferabletoothersoftware. ThemainfeatureofthisbookistheuseofHassediagramstoconstructandvisu- alizeadesign.Thesediagramsclarifyandsimplifymanyideasinexperimentaldesign yethavereceivedlittleattentionforteaching.Theyallowmetofocusonthelogical structureofanexperimentaldesign,facilitatecomparisonsbetweendesigns,cleanly separatetreatmentsfromunits,andmaketherandomizationmoreexplicit.Thevisu- alizationbyHassediagramsencouragestryingdifferentmodificationsofadesign, and an appropriate linear model and its specification in R are then easily derived fromagivendiagram.Theanalysisofvariancetechniquesarecarefullydeveloped from basic principles, and I exploit Hasse diagrams to derive model specifications forlinearmixedmodelsasamodernalternativeformorecomplexdesigns. I aimed at keeping the book concise enough to be read cover-to-cover, yet to includethestandardexperimentaldesignsfoundinbiologicalresearch.Ialsodiscuss fractionalfactorialandresponsesurfacedesignsthatprovedinvaluableforoptimizing experimental conditions in my own practice. I believe that power analysis is an importantpartofexperimentaldesignanddiscussthistopicindetail;thisincludes ‘portablepower’asaquick-and-dirtytoolforapproximatesamplesizecalculations thatIhavenotseenanywhereelse.Finally,Istronglyemphasizeestimationandeffect sizesovertestingand p-valuesandthereforediscusslinearcontrastsatconsiderable length;Ialsopresentstandardizedeffectsizesusuallynotdiscussedintextsinthe biomedicalsciences. Inadvancingthroughthematerial,Irelyonasinglemainexample—drugsand diets and their effect on mice—and use artificial data for illustrating the analyses. Thisapproachhastheadvantage thatthescientificquestionsandtheexperimental detailscanbehandledrathereasily,whichallowsmetointroducenewdesignsand analysistechniquesinanalreadyfamiliarsetting.Italsoemphasizeshowthesame treatments and experimental material can be organized and combined in different vii viii Preface ways,whichresultsindifferentdesignswithverydifferentproperties.Realexper- iments always have their own idiosyncrasies, of course, and rarely oblige the nice andcleandesignfoundinatextbook.Toallowforthisfact,Idiscussseveralreal-life exampleswithalltheirdeviationsfromthemostelegantdesigns,failedobservations, andalternativeinterpretationsoftheresults;thesemostlyoriginatefromconsultation andcollaborationwithcolleaguesatmydepartment. The book is organized in three main parts: Chaps. 1–3 introduce the design of experimentsandtheassociatedvocabulary,andprovideabriefbutthoroughreview ofstatisticalconcepts.Readersfamiliarwiththematerialofastandardintroductory statisticsclassmightreadChap.1andthenskimthroughChaps.2–3toabsorbthe notation and get acquainted with Hasse diagrams and the introductory examples. ThemaindesignsandanalysistechniquesarediscussedinChaps.4–8.Thismate- rial provides the core of an introductory design of experiments class and includes completelyrandomizedandblockeddesigns,factorialtreatmentdesigns,andsplit- unitdesigns.Chapters9–10introducetwomoreadvancedmethodsanddiscussthe mainideasoffractionalfactorialdesignsforhandlinglargerexperimentsandfactor screening,andofresponsesurfacemethodsforoptimization. Iamindebtedtomanypeoplewhocontributedtothisbook.LekshmiDharmarajan andJuliaDeichmanntaughttutorialsandoftensufferedthroughlast-minutechanges whilethematerialandexpositiontookshape.Theyalsoprovidedvaluablecomments on earlier versions of the text. Many students at the Department of Biosystems ScienceandEngineeringatETHZurichprovidedcorrectionsandhelpfulfeedback. ChristianLohaszandAndreasHierlemannwerekindenoughtoallowmetousetheir tumordiameterdata,andTaniaRobertsandFabianRudolfdidthesamefortheyeast mediumexample.CristinaLoureiroCasalderreyworkedontheyeasttransformation example.Mywifeenduredcountlesshoursofmelockedawayinanoffice,staring andmumblingatacomputerscreen.JörgStellinggenerouslygrantedmetimeand supportforwritingthisbook.Thankyouall! Finally, https://gitlab.com/csb.ethz/doe-book provides datasets and R-code for mostexamplesaswellaserrata. Basel,Switzerland Hans-MichaelKaltenbach November2020 Contents 1 PrinciplesofExperimentalDesign .............................. 1 1.1 Introduction ............................................. 1 1.2 ACautionaryTale ........................................ 2 1.3 TheLanguageofExperimentalDesign ...................... 3 1.4 ExperimentValidity ...................................... 4 1.4.1 ConstructValidity ................................ 5 1.4.2 InternalValidity .................................. 5 1.4.3 ExternalValidity .................................. 7 1.5 ReducingtheRiskofBias ................................. 8 1.5.1 RandomizationofTreatmentAllocation .............. 8 1.5.2 Blinding ......................................... 9 1.5.3 AnalysisPlanandRegistration ...................... 10 1.6 NotesandSummary ...................................... 11 References .................................................... 12 2 ReviewofStatisticalConcepts .................................. 15 2.1 Introduction ............................................. 15 2.2 Probability .............................................. 15 2.2.1 RandomVariablesandDistributions ................. 15 2.2.2 Quantiles ........................................ 16 2.2.3 IndependenceandConditionalDistributions .......... 17 2.2.4 ExpectationandVariance .......................... 18 2.2.5 CovarianceandCorrelation ........................ 21 2.2.6 SomeImportantDistributions ...................... 23 2.3 Estimation .............................................. 27 2.3.1 PropertiesofEstimators ........................... 28 2.3.2 EstimatorsofExpectationandVariance .............. 29 2.3.3 StandardErrorandPrecision ....................... 31 2.3.4 ConfidenceIntervals .............................. 32 2.3.5 EstimationforComparingTwoSamples ............. 35 2.4 TestingHypotheses ....................................... 41 2.4.1 TheLogicofFalsification .......................... 41 ix x Contents 2.4.2 Thet-Test ....................................... 43 2.4.3 p-ValuesandStatisticalSignificance ................ 43 2.4.4 FourAdditionalTestStatistics ...................... 47 2.5 NotesandSummary ...................................... 49 References .................................................... 51 3 PlanningforPrecisionandPower ............................... 53 3.1 Introduction ............................................. 53 3.2 BalancingAllocation ..................................... 53 3.3 ReducingtheStandardError ............................... 55 3.3.1 Sub-sampling .................................... 55 3.3.2 NarrowingtheExperimentalConditions .............. 56 3.3.3 Blocking ........................................ 56 3.4 SampleSizeandPrecision ................................. 57 3.4.1 SampleSizeforDesiredPrecision ................... 58 3.4.2 PrecisionforGivenSampleSize .................... 59 3.5 SampleSizeandPower ................................... 59 3.5.1 PowerAnalysisforKnownVariance ................. 60 3.5.2 PowerAnalysisforUnknownVariance .............. 62 3.5.3 PowerAnalysisinPractice ......................... 65 3.5.4 ‘ObservedPower’andRelatedFallacies .............. 65 3.6 NotesandSummary ...................................... 67 References .................................................... 68 4 ComparingMoreThanTwoGroups:One-WayANOVA .......... 69 4.1 Introduction ............................................. 69 4.2 ExperimentandData ..................................... 69 4.3 One-WayAnalysisofVariance ............................. 70 4.3.1 Testing Equality of Means by Comparing Variances ........................................ 71 4.3.2 AnalysisofVariance .............................. 72 4.3.3 EffectSizeMeasures .............................. 75 4.4 PowerAnalysisandSampleSizeforOmnibus F-test .......... 76 4.4.1 GeneralIdea ..................................... 77 4.4.2 DefiningtheMinimalEffectSize ................... 78 4.4.3 CalculatingPower ................................ 79 4.4.4 PowerAnalysisinPractice ......................... 81 4.4.5 PortablePower ................................... 81 4.5 HasseDiagramsandLinearModelSpecification .............. 82 4.5.1 HasseDiagramsofExperimentStructure ............. 83 4.5.2 TheLinearModel ................................. 87 4.5.3 AnalysisofVarianceinR .......................... 88 4.6 UnbalancedData ......................................... 90 4.6.1 AnalysisofVariance .............................. 90 4.6.2 EstimatingtheGrandMean ........................ 91 4.6.3 DegreesofFreedom ............................... 92

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.