ebook img

Statistical Curves and Parameters: Choosing an Appropriate Approach PDF

401 Pages·2000·24.46 MB·\401
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Curves and Parameters: Choosing an Appropriate Approach

Statistical Curves and Parameters Statistical Curves and Parameters: Choosing an Appropriate Approach Michael E. Tarter Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business AN A K PETERS BOOK First published 2000 by AK Peters, Ltd. Published 2018 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2000 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an lnforma business No claim to original U.S. Government works ISBN 13: 978-1-56881-105-5 (hbk) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Library of Congress cataloging-in-Publication Data Tarter, Michael E. Statistical curves and parameters : choosing an appropriate approach / Michael E. Tarter. p. cm. Includes bibliographical references and index. ISBN 1-56881-105-5 (alk. paper) 1. Mathematical statistics. I. Title. QA276.T28 2000 519.5--dc21 99-058803 Contents Preface xi 1 Introduction 1 1.1 Background................................................................................ 1 1.2 A fictional example.................................................................... 4 1.3 Curves and statistical history.................................................. 5 2 Model and Distribution Terminology 9 2.1 Modeling background .............................................................. 9 2.2 Representative number.............................................................. 10 2.3 Curve types................................................................................ 13 2.4 Distribution and data terminology........................................ 16 2.5 Parameter validity and property existence............................ 18 2.6 Estimator terminology.............................................................. 21 2.7 Degenerate curves .................................................................... 23 3 Variability and Related Curve Properties 25 3.1 Uncertainty and variability..................................................... 25 3.2 The absolute deviation curve property.................................. 26 3.3 The general AD and the ADM curve properties................... 28 3.4 Curve property selection........................................................... 33 3.5 The history of variability appreciation.................................. 36 3.6 Simplistic approaches and the history of probability . . . . 37 4 Moments and Curve Uncertainty 41 4.1 E and Var Geometry................................................................. 41 4.2 Higher order moments and the indicator function................ 45 4.3 Early statistical models........................................................... 47 v vi 4.4 Early statistical models and higher order moments............. 50 4.5 Curve sub-types and model choice........................................ 52 5 Goodness of fit 55 5.1 Neyman’s and alternative criteria........................................... 55 5.2 Criteria, metrics and estimators............................................... 61 5.3 The KolmogorofF-SmirnofF criteria ........................................ 64 5.4 Bernoulli variation and the Cauchy density......................... 65 5.5 Comparative goodness of fit..................................................... 71 6 Variates, Variables and Regression 73 6.1 Variates and variables.............................................................. 73 6.2 Variates and subjects................................................................. 75 6.3 Expressions, algorithms and life tables.................................. 76 6.4 Distinctions between curve types............................................ 77 6.5 Curve properties and symbols.................................................. 79 6.6 Variates, variables, and Ef(Y\x) regression......................... 80 6.7 μ(χ),Ε/(Υ\χ) and regression alternatives ............................ 83 7 Mixing Parameters and Data-generation models 89 7.1 An introduction to data-generation models ......................... 89 7.2 Error, regression, and probit, models..................................... 91 7.3 Regression and data-generation models.................................... 93 7.4 Probability, proportion, and data-generation models . . . . 94 7.5 The generation of contagious model and mixture model data 99 8 The Association Parameter p 103 8.1 Response, key, and nuisance, variates.........................................103 8.2 The association parameter p .........................................................105 8.3 Conditional, joint and marginal, notation................................110 8.4 The sample and the population correlation coefficient . . . 114 8.5 Correlation geometry.....................................................................116 9 Regression and Association Parameters 123 9.1 The curse of dimensionality.........................................................123 9.2 Multiple variable interdependence...............................................128 9.3 Logit and linear models...............................................................132 9.4 Dual regression functions ............................................................136 vii 10 Parameters, Confounding, and Least Squares 141 10.1 Ideal objects .................................................................................141 10.2 Linear data-generation models and mixture models................146 10.3 Parameter distinctiveness...........................................................148 10.4 Representational uniqueness and model fitting..........................150 10.5 Model-fitting considerations........................................................151 10.6 The variance curve property and bathtub functions............154 10.7 Regression and least squares........................................................155 11 Nonparametric Adjustment 159 11.1 Age-adjustment and logistic regression......................................159 11.2 Crude and specific rates...............................................................163 11.3 Age-adjustment; marginal, joint, and conditional curves . . 164 11.4 Age-adjustment and partial correlation......................................166 11.5 Direct and indirect adjustment..................................................168 11.6 The computation of adjusted rates............................................172 12 Continuous Variate Adjustment 175 12.1 Observed and expected rates.....................................................175 12.2 Trivariate data-generation and additive regression models . 177 12.3 Regression and data generation..................................................179 12.4 Correlation, regression, and nuisance variables..........................180 12.5 Trivariate Normality graphics.....................................................185 13 Procedural Road Maps 189 13.1 The organization of statistical data and statistical methods 189 13.2 Log and log(-log) transformations...............................................193 13.3 Methodological alternatives...........................................................196 13.4 Conditional and joint density models...........................................198 14 Model-based and Generalized Representation 203 14.1 Multiple properties and parameters............................................203 14.2 Specification and generalized representation.............................208 14.3 Identifiability of generalized versus extended model representation.....................................................................210 14.4 The E(X) curve property’s relationship to location and scale 214 15 Parameters, Transformations, and Quantiles 217 15.1 Location and scale parameter representation of continuous variates..........................................................................................217 15.2 p-focused transformations and σ-focused transformations . . 220 viii 15.3 Quantiles, quartiles, and box-and-whisker plots...................222 15.4 Normal ranges and box sizes.....................................................226 15.5 Confidence bands and prediction bands ...............................228 15.6 Notches, stems, and leaves........................................................229 15.7 The log transformation and skewness.....................................232 16 Noncentrality Parameters and Degrees of Freedom 237 16.1 The (Ci\A2) case and variate-variable relationships.............237 16.2 Invariance and confounding........................................................243 16.3 ANOVA tables and confounding ............................................247 16.4 Contingency tables and the parameter v ...............................249 16.5 Student-t and Cauchy densities..................................................251 17 Parameter-Based Estimation 255 17.1 Likelihood and BLU estimation..................................................255 17.2 Censoring and incompleteness.....................................................256 17.3 Outliers and errors........................................................................258 17.4 Ordered variates and subscripts..................................................260 17.5 BLU estimators..............................................................................261 17.6 BLU estimation and censoring ..................................................265 17.7 BLU estimators and alternatives...............................................269 18 Inference and Composite Variates 273 18.1 Curves and composite variates ...............................................273 18.2 Specific sampling distributions ..................................................276 18.3 The mean’s variance formula and mixtures............................281 18.4 Inference and a two-valued metric ........................................282 18.5 The one tail z-test........................................................................286 19 Parameters and Test Statistics 293 19.1 The parameter Δ ..................................... 293 19.2 Power and efficiency.....................................................................295 19.3 Power and test considerations.....................................................298 19.4 The sample mean and the sample median.................................302 19.5 Tables and the details of test construction................................304 19.6 Power, efficiency and BLU estimators ..................................306 20 Curve Truncation and the Curve e(x) 311 20.1 Expectation as a limit and the effects of truncation................311 20.2 Truncation symmetry ....................................................................313 20.3 Truncation and bias.....................................................................317 ix 20.4 Truncation and the curve e(x)..................................................327 20.5 When are curve properties relevant and when are model pa­ rameters relevant...........................................................................326 I Models and Notation 329 1.1 Notation historical background..................................................329 1.2 Specific models, the Normal........................................................333 1.3 Specific models, lognormals and related curves ........................336 1.4 Model families ..............................................................................340 1.5 Mixtures and Bayesian statistics...............................................342 1.6 Notational conventions about moments and variates . . . . 345 II Variate Independence and Curve Identity 347 II. 1 Independence and identical distribution..................................347 II.2 Regression notation.......................................................................350 III General Statistical and Mathematical Notation 355 References 367 Index 375

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.