ebook img

Statistical Arbitrage Using Limit Order Book Imbalance PDF

94 Pages·2015·2.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Arbitrage Using Limit Order Book Imbalance

Statistical Arbitrage Using Limit Order Book Imbalance Anton D. Rubisov University of Toronto Institute for Aerospace Studies Faculty of Applied Science and Engineering University of Toronto A thesis submitted in conformity with the requirements for the degree of Master of Applied Science c 2015AntonD.Rubisov (cid:13) Statistical Arbitrage Using Limit Order Book Imbalance Anton D. Rubisov UniversityofTorontoInstituteforAerospaceStudies FacultyofAppliedScienceandEngineering UniversityofToronto 2015 Abstract This dissertation demonstrates that there is high revenue potential in us- ing limit order book imbalance as a state variable in an algorithmic trading strategy. Beginning with the hypothesis that imbalance of bid/ask order volumes is an indicator for future price changes, exploratory data analysis suggests that modelling the joint distribution of imbalance and observed price changes as a continuous-time Markov chain presents a monetizable opportunity. The arbitrage problem is then formalized mathematically as a stochastic optimal control problem using limit orders and market orders withtheaimofmaximizingterminalwealth. Theproblemissolvedinboth continuous and discrete time using the dynamic programming principle, whichproducesbothconditionsformarketorderexecution,aswellaslimit order posting depths, as functions of time, inventory, and imbalance. The optimalcontrolsarecalibratedandbacktestedonhistoricalNASDAQITCH data,whichproducesconsistentandsubstantialrevenue. ii Acknowledgements I couldn’t begin to enumerate the times and ways this dissertation could have failed to be. I am deeply grateful to several individuals for making it a reality, and I’d like to acknowledgethemhere. Dr. Gabriele D’Eleuterio, my supervisor at UTIAS, is the epitomical supernatural mentoroftheherojourney,withoutwhomIwouldhaveabandonedmystudies. Gabe was the inspirational upholder of academic values, who relentlessly stressed the sub- tleties of scientific presentation and communication, and guided me through a pretty toughtime. Thankyouforyoursupport,guidance,andforeverycoffee. Dr. SebastianJaimungal,professorofstatisticsattheuniversity,tookmeonasasurro- gate student half-way through my studies, and guided every step of this dissertation. Despitehavingabsolutelynoobligationtodoso,hehadfaithinmeandpatiencewith me in navigating an entirely unfamiliar subject. Thank you for repeatedly making yourselfavailabletohelpwithallthemath. Dr. Jack Carlyle, then a PhD student in solar physics at UCL, inspired me to quit my job and go back to school for a graduate degree. It wasn’t an easy decision, and the juryisoutonwhetheritwasagoodone. Butthanksforalltheteaandcrumpets. Ted Herman, a friend that redefines friendship, has read more of my research than anyoneeverwill. Atacrucialtime,westrucktheFran’sAccordthatinvolvedprewrit- ten$100chequesbeingshreddedonaweeklybasisuponreceiptofaprogressupdate. Legitimately,thisisprobablythenumberonereasonthatmydissertationgotdone. Thank you mom for always loving, supporting, and inspiring me to my best. Thank youdadforprettywellbeingasupervisortoo. iii Contents 1 Introduction 1 1.1 TheLimit-OrderBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 ITCHDataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 OrderImbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 ExploratoryDataAnalysis 8 2.1 ModellingImbalance: ContinuousTimeMarkovChain . . . . . . . . . . 8 2.2 MaximumLikelihoodEstimateofaMarkov-ModulatedPoissonProcess 10 2.2.1 InfinitesimalGeneratorMatrix . . . . . . . . . . . . . . . . . . . . 10 2.2.2 ArrivalRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Two-DimensionalCTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 PredictingFuturePriceChanges . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 NaiveTradingStrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 CalibrationandBacktesting . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 ConclusionsfromtheNaiveTradingStrategies . . . . . . . . . . . . . . . 20 iv 3 MaximizingWealthviaContinuous-TimeStochasticControl 24 3.1 SystemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 DynamicProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 MaximizingTerminalWealth . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 InterpretingtheDPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 MaximizingWealthviaDiscrete-TimeStochasticControl 37 4.1 SystemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 DynamicProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 MaximizingTerminalWealth . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 SimplifyingandInterpretingtheDPE . . . . . . . . . . . . . . . . . . . . 49 5 Results 52 5.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 DynamicsoftheOptimalPostingDepths . . . . . . . . . . . . . . . . . . 53 5.2.1 ComparingOptimalControlPerformance . . . . . . . . . . . . . 62 5.3 In-SampleBacktesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 Same-DayCalibration . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2 WeekOffsetCalibration . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.3 AnnualCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.4 Out-of-SampleBacktesting . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Conclusion 79 v List of Figures 1.1 Structureandmechanicsofthelimit-orderbook . . . . . . . . . . . . . . 4 2.1 Hypotheticaltimelineofmarketordersandimbalanceregimeswitches . 10 2.2 Time intervals for time-weighted averaging of imbalance and for price change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Comparisonofthenaivetradingstrategies . . . . . . . . . . . . . . . . . 21 5.1 OptimalbuyLOdepthsforsellpressureimbalance . . . . . . . . . . . . 55 5.2 OptimalbuyLOdepthsforneutralimbalance . . . . . . . . . . . . . . . 56 5.3 OptimalbuyLOdepthsforbuypressureimbalance . . . . . . . . . . . . 57 5.4 OptimalsellLOdepthsforsellpressureimbalance . . . . . . . . . . . . . 59 5.5 OptimalsellLOdepthsforneutralimbalance . . . . . . . . . . . . . . . . 60 5.6 OptimalsellLOdepthsforbuypressureimbalance . . . . . . . . . . . . 61 5.7 Comparisonofthefourstochasticoptimalcontrolmethods . . . . . . . . 63 5.8 Cointegrationrelationofthefourstochasticcontrolmethods . . . . . . . 64 5.9 Detailedsamplepathsofthestochasticoptimalcontrolstrategies . . . . 66 5.10 Comparisonofoptimalpostingdepthsonthesamplepath . . . . . . . . 67 5.11 ComparisonofP&Landinventoryonthesamplepath . . . . . . . . . . 68 vi 5.12 In-samplebacktestingperformanceusingsame-daycalibration . . . . . 70 5.13 In-samplebacktestingperformanceusingweek-offsetcalibration . . . . 73 5.14 In-samplebacktestingperformanceusingannualcalibration . . . . . . . 76 5.15 Out-of-samplebacktestingperformanceusingannualcalibration . . . . 78 vii List of Tables 2.1 Stocksusedintheexploratorydataanalysis . . . . . . . . . . . . . . . . . 8 2.2 One-dimensionalencodingoftwo-dimensionalCTMC . . . . . . . . . . 13 2.3 p-valuesfortestingthetimehomogeneityhypothesis . . . . . . . . . . . 15 2.4 Probabilitiesoffuturepricechanges . . . . . . . . . . . . . . . . . . . . . 18 2.5 Hypotheticaltimelineofadverseselectionwithmarketorders . . . . . . 23 5.1 Stocksusedinthestochasticoptimalcontrolbacktesting . . . . . . . . . 52 5.2 Fixedparametersforbacktesting . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 Parameterformulaeforbacktesting . . . . . . . . . . . . . . . . . . . . . . 53 5.4 Correlationmatrixofstochasticoptimalcontrolreturns . . . . . . . . . . 62 5.5 Numberoftradescomparisonofthefourstochasticcontrolmethods . . 64 5.6 In-samplebacktestingperformanceusingsame-daycalibration . . . . . 71 5.7 In-samplebacktestingperformanceusingweek-offsetcalibration . . . . 74 5.8 In-samplebacktestingperformanceusingannualcalibration . . . . . . . 76 5.9 Out-of-samplebacktestingperformanceusingannualcalibration . . . . 78 viii Nomenclature # Numberofstatesintowhichthesmoothedimbalanceisdiscretized bins Filtrationofaprobabilityspace F Infinitesimalgeneratoroperator L ∆S(t) Signoftheobservedpricechangeattime t ∆ t Sizeofrollingwindowforimbalancesmoothing I ∆ t Sizeofwindowforpricechangecalculation S δ Thedepthatwhichwepostabuy(δ+)andsell(δ )limitorder ± − η Magnitudeofthemidpricechange(arandomvariable) 0,z 1 Indicatorfunction κ Limitorderfillprobabilityconstant λ Arrivalratesofbuy(λ+)andsell(λ )orders ± − G Continuous-timeMarkovchaingeneratormatrix P Continuous-timeMarkovchaintransitionprobabilitymatrix µ Rateofarrivalofotheragents’buy(µ+)andsell(µ )marketorders ± − ∂ Partialderivativewithrespecttox x ρ(t) Imbalanceratio,smoothedbyaveragingoverarollingwindow τ Astoppingtimeatwhichweexecuteamarketorder ξ Bid-AskHalf-Spread ix H(t,x,s,z,q) Continuous-timevaluefunction Hτ,δ±(t,x,s,z,q) Continuous-timeperformancecriterionofthecontrolsτ and δ ± I(t) Imbalanceratio,raw K Otheragents’buy(K+)andsell(K )marketorders ± − L A counting process of how many of our buy (L+) and sell (L ) limit orders are ± − filled M Executionofourbuy(M+)andsell(M )marketorders ± − Qτ,δ Ourinventoryattime t havingusedcontrolsτ and δ t S(t) Midprice V (x,s,z,q) Discrete-timevaluefunction k Vδ±(x,s,z,q) Discrete-timeperformancecriterionofthecontrolsτ and δ k ± τ,δ W Ourwealth(cash,valueofassets,andliquidationpenalty)attimethavingused t controlsτ and δ Xτ,δ Ourcashattime t havingusedcontrolsτ and δ t Z(t) Continuous-timeMarkovchainvariable AAPL StocktickerforAppleInc. FARO StocktickerforFAROTechnologiesInc. INTC StocktickerforIntelCorporation MMM Stocktickerfor3MCompany NTAP StocktickerforNetApp,Inc. ORCL StocktickerforOracleCorporation CTMC Continuous-timeMarkovchain DPE Dynamicprogrammingequation ITCH MarketdatafeedprovidedbyNASDAQ x

Description:
of Applied Science c 2015 Anton D. Rubisov ing limit order book imbalance as a state variable in an algorithmic trading strategy. Beginning with
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.