ebook img

Stationary Diffraction by Wedges: Method of Automorphic Functions on Complex Characteristics PDF

157 Pages·2019·2.757 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stationary Diffraction by Wedges: Method of Automorphic Functions on Complex Characteristics

Lecture Notes in Mathematics 2249 Alexander Komech Anatoli Merzon Stationary Diffraction by Wedges Method of Automorphic Functions on Complex Characteristics Lecture Notes in Mathematics 2249 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryEditors: KarinBaur,Leeds MichelBrion,Grenoble CamilloDeLellis,Princeton AlessioFigalli,Zurich AnnetteHuber,Freiburg DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Cambridge AngelaKunoth,Cologne ArianeMézard,Paris MarkPodolskij,Aarhus SylviaSerfaty,NewYork GabrieleVezzosi,Firenze AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Alexander Komech (cid:129) Anatoli Merzon Stationary Diffraction by Wedges Method of Automorphic Functions on Complex Characteristics 123 AlexanderKomech AnatoliMerzon FacultyofMathematics InstitutodeFisicayMatematicas UniversityofVienna UniversidadMichoacanadeSanNicolasde Vienna,Austria Hidalgo Morelia Michoacán,Mexico ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-030-26698-1 ISBN978-3-030-26699-8 (eBook) https://doi.org/10.1007/978-3-030-26699-8 MathematicsSubjectClassification(2010):Primary:35J25,78A45;Secondary:35Q60 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To theblessed memoryof NinaIlina Preface We present a complete solution to the classical problem of stationary diffraction bywedgeswithgeneralboundaryconditions(b.c.).FortheDirichletandNeumann b.c.,thesolutionwasfoundbySommerfeldin1896andfortheimpedanceb.c.(or LeontovichandRobinb.c.)byMalyuzhinetzin1958.Ourapproachreliesonanovel “methodofautomorphicfunctions(MAF)oncomplexcharacteristics”whichgives allsolutionstoboundaryproblemsforsecond-orderellipticoperatorswithgeneral boundaryconditions.Thismethodisalsoapplicabletotheproblemsofguidedwater wavesonaslopingbeach,scatteringofseismicwaves, etc. This methodwas introducedby one of the authorsin 1973 for angles Φ < π, andwasextendedin1992–2007toanglesΦ > π bybothauthorsincollaboration. ThemethodreliesonthecomplexFourier-Laplacetransformintwovariableswhich inturnleadstoasystemofalgebraicequationsontheRiemannsurfaceofcomplex characteristics.Thissystemisreducedtoonealgebraicequationwithtwounknown functionsontheRiemannsurface.Wereducethisundeterminedalgebraicequation to the Riemann–Hilbert problem on the Riemann surface applying Malyshev’s method of automorphicfunctions. This reduction is the key step of our approach. Finally, the Riemann–Hilbertproblemis solved in quadratures.This method gen- eralizestheMalyuzhinetzapproachintroducedintheframeworkoftheimpedance boundarycondition. Ourpresentationcontainsmanyimportantdetailsandresults,whichwepublish hereforthefirsttime.Allproofsandconstructionsareconsiderablystreamlinedand simplified. We also outline the creation of the diffraction theory by Fresnel, Kirchhoff, Poincaré,andSommerfeldandsurveysubsequentresultsbySobolev,Malyuzhinetz, Keller, Maz’ya, Grisvard, and others on the diffraction by wedges and on related problemsinangulardomains. Vienna,Austria AlexanderKomech Morelia,Mexico AnatoliMerzon vii Contents 1 Introduction................................................................. 1 1.1 EarlyTheoryofDiffraction.......................................... 1 1.2 DiffractionbyWedges ............................................... 2 1.3 Method of Automorphic Functions on Complex Characteristics(MAF) ............................................... 3 1.4 ApplicationsoftheMAFMethod................................... 4 1.5 GeneralSchemeoftheMAFMethod............................... 5 1.6 DevelopmentoftheMAFMethod .................................. 9 1.7 Comments ............................................................ 10 1.8 PlanoftheBook...................................................... 10 PartI SurveyofDiffractionTheory 2 TheEarlyTheoryofDiffraction.......................................... 15 2.1 TheGrimaldiObservations.......................................... 15 2.2 TheHuygensPrinciple............................................... 16 2.3 TheYoungTheoryoftheInterferenceandDiffraction............. 16 3 Fresnel–KirchhoffDiffractionTheory................................... 19 3.1 FresnelTheoryofDiffraction........................................ 19 3.2 TheKirchhoffTheoryofDiffraction................................ 22 3.2.1 TheKirchhoffApproximation............................... 24 3.2.2 TheFraunhoferDiffraction.................................. 25 3.3 DiffractionbyaHalf-PlaneintheFresnel–KirchhoffTheory ..... 25 3.4 TheFraunhofer/FresnelLimit:DiffractionofPlaneWaves........ 30 3.5 GeometricalOpticsandDiffraction................................. 33 4 StationaryandTime-DependentDiffraction............................ 37 4.1 Time-DependentDiffractionandLimitingAmplitude Principle .............................................................. 37 4.2 StationaryDiffractionTheory ....................................... 40 4.2.1 TheLimitingAbsorptionPrinciple ......................... 41 4.2.2 TheSommerfeldRadiationCondition...................... 41 ix x Contents 5 TheSommerfeldTheoryofDiffractionbyHalf-Plane................. 43 5.1 StationaryDiffractionbytheHalf-Plane............................ 43 5.2 ReflectionsontheRiemannSurface................................. 45 5.3 IntegralRepresentationforBranchingSolutions................... 45 5.3.1 TheMaxwellRepresentationforSphericalFunctions..... 46 5.3.2 TheSommerfeldLimitofSphericalFunctions............. 47 5.3.3 TheSommerfeldIntegralRepresentation................... 48 5.4 InstructiveExamples................................................. 50 5.4.1 RationalDensity ............................................. 50 5.4.2 BranchingDensities.......................................... 52 5.5 DiffractionbytheHalf-Plane........................................ 52 5.6 TheDiffractedWave ................................................. 54 5.7 ExpressionviaFresnelIntegrals..................................... 57 5.8 AgreementwiththeFresnel-KirchhoffApproximation............ 58 5.9 SelectionRulesfortheSommerfeldSolution....................... 61 6 DiffractionbyWedgeAfterSommerfeld’sArticle...................... 63 6.1 StationaryProblemsinAngles ...................................... 63 6.2 Time-DependentDiffractionbyWedges............................ 66 PartII Method of Automorphic Functions on Complex Characteristics 7 StationaryBoundaryValueProblemsinConvexAngles............... 71 8 ExtensiontothePlane...................................................... 77 8.1 RegularSolutions .................................................... 77 8.2 DistributionalSolutions.............................................. 79 9 BoundaryConditionsviatheCauchyData.............................. 85 10 ConnectionEquationontheRiemannSurface.......................... 89 11 OnEquivalenceoftheReduction......................................... 93 11.1 DistributionalSolutions.............................................. 93 11.2 RegularSolutions .................................................... 93 12 UndeterminedAlgebraicEquationsontheRiemannSurface......... 97 13 AutomorphicFunctionsontheRiemannSurface....................... 99 14 FunctionalEquationwithaShift ......................................... 101 15 LiftingtotheUniversalCovering......................................... 105 16 TheRiemann-HilbertProblemontheRiemannSurface .............. 111 17 TheFactorization........................................................... 117 17.1 EllipticityandBoundBelow......................................... 117 17.2 TheEdge-PointValues............................................... 118 17.3 EquatingEdge-PointValues......................................... 119 Contents xi 17.4 UnwindingtheSymbol .............................................. 120 17.5 AsymptoticsoftheFactorization.................................... 122 18 TheSaltusProblemandFinalFormula.................................. 125 18.1 TheSaltusProblem .................................................. 125 18.2 TheFinalFormula.................................................... 126 19 TheReconstructionofSolutionandtheFredholmness ................ 129 19.1 ReconstructionofDistributionalSolutions ......................... 129 19.2 ReconstructionofRegularSolutions................................ 131 20 ExtensionoftheMethodtoNon-convexAngle.......................... 139 20.1 ConnectionEquationforNon-convexAngle ....................... 140 20.2 IntegralConnectionEquationontheRiemannSurface ............ 141 20.3 LiftingontotheUniversalCovering................................. 144 20.4 TheCauchyKernelontheRiemannSurface ....................... 146 20.5 ReductiontotheRiemann–HilbertProblem........................ 148 21 Comments................................................................... 149 A SobolevSpacesontheHalf-Line.......................................... 151 References......................................................................... 153 Index............................................................................... 161

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.