Encyclopaediaof MathematicalSciences Volume137 Invariant Theoryand AlgebraicTransformation GroupsVIII SubseriesEditors: RevazV.Gamkrelidze VladimirL.Popov Venkatramani Lakshmibai Komaranapuram N. Raghavan Standard Monomial Theory Invariant Theoretic Approach VenkatramaniLakshmibai KomaranapuramN.Raghavan DepartmentofMathematics InstituteofMathematicalSciences NortheasternUniversity,Boston02115 C.I.T.Campus,Taramani USA Chennai,600113 e-mail:[email protected] INDIA e-mail:[email protected] FoundingeditoroftheEncyclopaediaofMathematicalSciences:RevazV.Gamkrelidze ISBN978-3-540-76756-5 e-ISBN978-3-540-76757-2 DOI10.1007/978-3-540-76757-2 EncyclopaediaofMathematicalSciencesISSN0938-0396 LibraryofCongressControlNumber:2007939889 MathematicsSubjectClassification(2000):13F50,14M12,14M15,14M17,14L35 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg,Germany Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Tothememoryof Professor C.Musili Preface ThegoalofthisbookistopresenttheresultsofClassicalInvariantTheory(abbrevi- atedCIT)andthoseofStandardMonomialTheory(abbreviatedSMT)insuchaway astobringouttheconnectionbetweenthetwotheories.Eventhoughtherearemany recent books on CIT, e.g., [25,35,53,97,99], none of them discusses SMT: there is but only a passing mention of the main papers of SMT towards the end of [53]. Detailsabouttheconnectionarealsonottobefoundinthecomprehensivetreatment ofSMT[59]thatisinpreparation.Hencetheneedwasfeltforabookthatdescribes insomedetailthisnaturalandbeautifulconnection. After presenting SMT for Schubert varieties—especially, for those in the ordi- nary,orthogonal,andsymplecticGrassmannians—itisshown(usingSMT)thatthe categoricalquotientsappearinginCITmaybeidentifiedas“suitable”opensubsets of certain Schubertvarieties.Similar results are presentedfor certaincanonicalac- tionsofthespeciallinearandspecialorthogonalgroups.Wehavealsoincludedsome importantapplicationsofSMT:tothedeterminationofsingularlociofSchubertva- rieties, to the study of some affine varieties related to Schubert varieties—ladder determinantalvarieties,quivervarieties,varietyofcomplexes,etc.—andtotoricde- generationsofSchubertvarieties. Prerequisiteforthisbookissomefamiliaritywithcommutativealgebra,algebraic geometry and algebraic groups. A basic reference for commutative algebra is [27], for algebraic geometry [37], and for algebraic groups [7]. We have also included a briefreviewofGIT(geometricinvarianttheory),areferenceforwhichis[87](and also[96]). Wehavemostlyusedstandardnotationandterminology,andhavetriedtokeep notationto a minimum.Throughoutthe book,we havenumberedTheorems, Lem- mas, Propositions etc., in order according to their section and subsection; for ex- ample, 3.2.4 refers to fourth item in the second subsection of third section of the presentchapter.Thechapternumberisalsomentionediftheitemappearsinanother chapter. ThisbookmaybeusedforayearlongcourseoninvarianttheoryandSchubert varieties.Thematerialcoveredinthisbookshouldprovideadequatepreparationfor VIII Preface graduate students and researchers in the areas of algebraic geometry and algebraic groupstoworkonopenproblemsintheseareas. A Homage & an acknowledgement: In the original plan for this book, Musili was one of the co-authors. Unfortunately, Musili passed away suddenly on Oct 9, 2005.WededicatethisbooktothememoryofMusili.Wealsowouldliketothank Ms. Bhagyavati (Musili’s wife) and Ms. Lata (Musili’s daughter) for providing us withthefilesthatMusilihadprepared. Wewishtothanktherefereesfortheircomments. Boston,Trieste V.Lakshmibai October2007 K.N.Raghavan Contents 1 Introduction................................................... 1 1.1 Thesubjectmatterinanutshell............................... 1 1.1.1 WhatisCIT?........................................ 1 1.1.2 WhatisSMT?....................................... 2 1.1.3 TheSMTapproachtoCIT ............................ 2 1.2 Thesubjectmatterindetail .................................. 2 1.2.1 ProofbytheSMTapproach ........................... 3 1.2.2 SL (K),SO (K)actions ............................. 5 n n 1.3 Whythisbook? ............................................ 6 1.4 AbriefhistoryofSMT...................................... 7 1.5 SomefeaturesoftheSMTapproach........................... 7 1.6 Theorganizationofthebook ................................. 9 2 Generalitiesonalgebraicvarieties................................ 11 2.1 Somebasicdefinitions ...................................... 11 2.2 Algebraicvarieties ......................................... 12 2.2.1 Affinevarieties ...................................... 12 3 Generalitiesonalgebraicgroups ................................. 17 3.1 Abstractrootsystems ....................................... 17 3.2 Rootsystemsofalgebraicgroups ............................. 19 3.2.1 Linearalgebraicgroups ............................... 19 3.2.2 Parabolicsubgroups.................................. 21 3.3 Schubertvarieties .......................................... 22 3.3.1 WeylandDemazuremodules .......................... 24 3.3.2 LinebundlesonG/Q ................................ 25 3.3.3 EquationsdefiningaSchubertvariety ................... 27 4 Grassmannian ................................................. 29 4.1 ThePlückerembedding ..................................... 29 4.1.1 ThepartiallyorderedsetI .......................... 30 d,n X Contents 4.1.2 PlückerembeddingandPlückercoordinates.............. 30 4.1.3 Plückerquadraticrelations ............................ 31 4.1.4 Moregeneralquadraticrelations ....................... 32 (cid:2) 4.1.5 TheconeG overG .............................. 33 d,n d,n 4.1.6 IdentificationofG/P withG ....................... 33 d d,n 4.2 SchubertvarietiesofG ................................... 34 d,n 4.2.1 Bruhatdecomposition ................................ 34 4.2.2 DimensionofX ..................................... 35 i 4.2.3 FurtherresultsonSchubertvarieties .................... 35 4.3 StandardmonomialtheoryforSchubertvarietiesinG ......... 36 d,n 4.3.1 Standardmonomials.................................. 36 4.3.2 Linearindependenceofstandardmonomials ............. 36 4.3.3 Generationbystandardmonomials ..................... 37 4.3.4 EquationsdefiningSchubertvarieties ................... 38 4.4 StandardmonomialtheoryforaunionofSchubertvarieties ....... 39 4.4.1 Linearindependenceofstandardmonomials ............. 39 4.4.2 Standardmonomialbasis.............................. 39 4.4.3 Consequences ....................................... 40 4.5 Vanishingtheorems......................................... 41 4.6 ArithmeticCohen-Macaulayness,normalityandfactoriality....... 44 4.6.1 FactorialSchubertvarieties............................ 46 5 Determinantalvarieties ......................................... 47 5.1 Recollectionoffacts ........................................ 47 5.1.1 EquationsdefiningSchubertvarietiesintheGrassmannian . 48 5.1.2 EvaluationofPlückercoordinatesontheoppositebigcell inG ............................................. 48 d,n 5.1.3 IdealoftheoppositecellinX(w) ...................... 49 5.2 Determinantalvarieties...................................... 49 5.2.1 ThevarietyD ...................................... 49 t 5.2.2 IdentificationofD withY ........................... 49 t φ 5.2.3 Thebijectionθ ...................................... 51 5.2.4 Thepartialorder(cid:2)................................... 51 5.2.5 Cogenerationofanideal .............................. 52 5.2.6 Themonomialorder≺andGröbnerbases ............... 53 6 SymplecticGrassmannian....................................... 55 6.1 SomebasicfactsonSp(V) .................................. 56 6.1.1 SchubertvarietiesinG/B ............................ 59 G 6.2 ThevarietyG/P .......................................... 60 n − 6.2.1 IdentificationofSymM withO ...................... 61 n G 6.2.2 Canonicaldualpair .................................. 62 6.2.3 Thebijectionθ ...................................... 62 6.2.4 ThedualWeylG-modulewithhighestweightω ......... 63 n 6.2.5 IdentificationofD (SymM )withY (ϕ)............... 64 t n Pn Contents XI 6.2.6 Admissiblepairsandcanonicalpairs.................... 65 6.2.7 Canonicalpairs...................................... 65 6.2.8 Theinclusionη:In,2n (cid:7)→WPn ×WPn.................. 66 6.2.9 AstandardmonomialbasisforD (SymM ) ............. 67 t n 6.2.10 DeConcini-Procesi’sbasisforD (SymM ) ............. 68 t n 7 OrthogonalGrassmannian ...................................... 71 7.1 TheevenorthogonalgroupSO(2n) ........................... 71 7.1.1 SchubertvarietiesinG/B ............................ 74 G 7.2 ThevarietyG/P .......................................... 77 n − 7.2.1 IdentificationofSkM withO ....................... 78 n G 7.2.2 Canonicaldualpair .................................. 78 7.2.3 Thebijectionθ ...................................... 79 7.2.4 ThedualWeylG-modulewithhighestweightω ......... 79 n 7.2.5 IdentificationofD (SkM )withY (ϕ) ................. 80 t n G 7.2.6 AstandardmonomialbasisforD (SkM )............... 82 t n 8 Thestandardmonomialtheoreticbasis ........................... 85 8.1 SMTfortheevenorthogonalGrassmannian .................... 86 8.2 SMTforthesymplecticGrassmannian......................... 89 9 ReviewofGIT ................................................. 95 9.1 G-spaces.................................................. 95 9.1.1 Reductivegroups .................................... 95 9.2 Affinequotients............................................ 98 9.2.1 Affineactions ....................................... 99 9.3 Categoricalquotients ....................................... 101 9.3.1 Examples........................................... 102 9.4 Goodquotients ............................................ 103 9.4.1 Someresultsongoodquotients ........................ 105 9.5 Stableandsemi-stablepoints................................. 108 9.5.1 Stable,semistable,andpolystablepoints................. 108 9.5.2 Othercharacterizationsofstability,semistability .......... 110 9.6 Projectivequotients......................................... 114 9.7 L-linearactions ............................................ 117 9.8 Hilbert-Mumfordcriterion ................................... 117 10 Invarianttheory ............................................... 121 10.1 Preliminarylemmas ........................................ 121 10.2 SL (K)-action ............................................ 124 d 10.2.1 Thefunctionsf ..................................... 124 τ 10.2.2 Thefirstandsecondfundamentaltheorems............... 126 10.3 GL (K)-action: ........................................... 128 n 10.3.1 Thefirstandsecondfundamentaltheorems............... 129 10.4 O (K)-action.............................................. 132 n XII Contents 10.5 Sp (K)-action ............................................ 136 2(cid:9) 11 SL (K)-action................................................. 137 n 11.1 Quadraticrelations ......................................... 138 11.1.1 ThepartiallyorderedsetH .......................... 139 r,d 11.2 TheK-algebraS ........................................... 140 11.2.1 TheSL (K)-action .................................. 141 n 11.3 StandardmonomialsintheK-algebraS........................ 142 11.3.1 Quadraticrelations................................... 143 11.3.2 Linearindependenceofstandardmonomials ............. 145 11.3.3 ThealgebraS(D).................................... 146 11.3.4 AstandardmonomialbasisforR(D) ................... 148 11.3.5 StandardmonomialbasesforM(D),S(D)............... 149 11.4 NormalityandCohen-MacaulaynessoftheK-algebraS .......... 150 11.4.1 Thealgebraassociatedtoadistributivelattice ............ 150 11.4.2 FlatdegenerationsofcertainK-algebras................. 151 11.4.3 ThedistributivelatticeD.............................. 152 11.4.4 FlatdegenerationofSpecR(D)tothetoricvariety SpecA(D).......................................... 154 11.5 TheringofinvariantsK[X]SLn(K) ............................ 155 12 SO (K)-action ................................................ 159 n 12.1 Preliminaries .............................................. 160 12.1.1 TheLagrangianGrassmannianvariety................... 161 12.1.2 SchubertvarietiesinL .............................. 161 m 12.1.3 TheoppositebigcellinL ............................ 162 m − 12.1.4 Thefunctionsf onO ............................. 163 τ,ϕ G 12.1.5 TheoppositecellinX(w)............................. 164 12.1.6 Symmetricdeterminantalvarieties ...................... 164 12.1.7 ThesetH ......................................... 165 m 12.2 ThealgebraS.............................................. 167 12.2.1 Standardmonomialsandtheirlinearindependence ........ 168 12.2.2 Linearindependenceofstandardmonomials ............. 169 12.3 ThealgebraS(D) .......................................... 169 12.3.1 Quadraticrelations................................... 170 12.3.2 AstandardmonomialbasisforR(D) ................... 171 12.3.3 StandardmonomialbasesforS(D) ..................... 172 12.4 Cohen-MacaulaynessofS ................................... 173 12.4.1 AdosetalgebrastructureforR(D) ..................... 175 12.5 TheequalityRSOn(K) =S ................................... 176 12.6 Applicationtomoduliproblem ............................... 180 12.7 ResultsfortheadjointactionofSL (K) ....................... 181 2