ebook img

Stability and Control of Conventional and Unconventional Aerospace Vehicle Configurations: A Generic Approach from Subsonic to Hypersonic Speeds PDF

418 Pages·2019·10.127 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability and Control of Conventional and Unconventional Aerospace Vehicle Configurations: A Generic Approach from Subsonic to Hypersonic Speeds

Springer Aerospace Technology Bernd Chudoba Stability and Control of Conventional and Unconventional Aerospace Vehicle Configurations A Generic Approach from Subsonic to Hypersonic Speeds Springer Aerospace Technology The Springer Aerospace Technology series isdevoted tothe technology of aircraft and spacecraft including design, construction, control and the science. The books present the fundamentals and applications in all fields related to aerospace engineering. The topics include aircraft, missiles, space vehicles, aircraft engines, propulsion units and related subjects. More information about this series at http://www.springer.com/series/8613 Bernd Chudoba Stability and Control of Conventional and Unconventional Aerospace Vehicle fi Con gurations A Generic Approach from Subsonic to Hypersonic Speeds 123 BerndChudoba Department ofMechanical andAerospace Engineering TheUniversity of Texasat Arlington Arlington, TX,USA ISSN 1869-1730 ISSN 1869-1749 (electronic) SpringerAerospace Technology ISBN978-3-030-16855-1 ISBN978-3-030-16856-8 (eBook) https://doi.org/10.1007/978-3-030-16856-8 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Don’t let your preoccupation with reality stifle your imagination. Robert A.Cassanovaand SharonM.Garrison Acknowledgements A number of people cooperated in making this work possible, and I would like to acknowledge their contributions. The presented methodology concept was developed from 1995 to 1999 at Cranfield University, England, as part of a research contract with DaimlerChrysler AerospaceAirbusGmbHundercontractnumberEZFutureProjects80995517.The research contract was formally funded by the European Supersonic Commercial Transport (ESCT) project with Dr. Josef Mertens serving as technical monitor for the first two years. The European trilateral technical cooperation had been estab- lished by the ESCT project managers Detlef Reimers (DaimlerChrysler Aerospace Airbus), Phil Green (British Aerospace Airbus) and MichèlePacull (Aérospatiale). In retrospect, the following lists some of the specialists involved: Ulf Graeber, Burkhard Kiekebusch, Dirk vonReithandDr.Alexander Van derVelden (Synaps Inc.) from DaimlerChrysler Aerospace Airbus; Les Hyde, Dr. Clyde Warsop and Alan Perry from British Aerospace Airbus; Elie Khaski and Joseph Irvoas from Aérospatiale Aéronautique Airbus, just to mention some. The views and conclusions contained in this book, however, are those of the authorandshouldnotbeinterpretedasnecessarilyrepresentingtheofficialpolicies orendorsements,eitherexpressedorimplied,ofDaimlerChryslerAerospaceAirbus or any other company. IamespeciallygratefulforthejointeffortofMikeCookandDr.HowardSmith at Cranfield University. They knew when to applaud my progress and when to demandmore.MikeCook’sintimateunderstandingofflightmechanics,hisdevoted ability of being a teacher for academic and technical issues are clearly an ever- lasting experience. Howard Smith’s knowledge of aerospace vehicle design, in particular the computational side, proved to be invaluable during the method planningphase.Iamthankfulfortheirunbiasedtechnical,academicandpersonal support throughout the entire research period. The author gratefully acknowledges the dedicated skill and expertise from the following individuals, who endured without any hesitation in intensifying the author’s fascination for aerospace science. I have been fortunate to receive their vii viii Acknowledgements attention, which enhanced disciplinary and multidisciplinary understanding of technicalandnon-technicalissues:GeorgPoschmann(AirbusIndustrie),Dr.Jean Roeder (Airbus Industrie), Alan Perry (British Aerospace Airbus), Dr. Clyde Warsop (BAe Sowerby Research Center), Juergen Hammer (Airbus Industrie), Joseph Irvoas (Aérospatiale), Robert G. Hoey (USAF), Gerald C. Blausey (Lockheed Martin), Irving Ashkenas (Northrop, STI), Fred Krafka (Airbus Industrie), Clyde Warsop (BAe Sowerby Research Center), Professor Mason (Virginia Tech), Professor Fielding, Professor Howe, Professor Stollery and Pete Thomasson from Cranfield University. I wish to acknowledge with deep gratitude the support of my wife, Andrea, and our children, Elena Sophia and Luca Samuel, for putting up with my very erratic hoursofworking.Theyallencouragedmethroughtheyearsofmytryingperiodsof my research life. Andrea helped me through the research period exciting and as well difficult times. It is to her, my best and beautiful critic, that this book is dedicated. Arlington, USA Bernd Chudoba June 2019 Contents 1 Introduction and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Research Project Initiation and Motivation. . . . . . . . . . . . . . . . . . 1 1.1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Today’s Aerospace Vehicle Design Problem . . . . . . . . . . . 3 1.1.3 New Aerospace Vehicle Design Problem . . . . . . . . . . . . . 9 1.2 Research Project Aims, Scope, and Objectives . . . . . . . . . . . . . . . 15 1.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Generic Aerospace Vehicle Design—Knowledge Utilisation . . . . . . . 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Prelude—Design Office of Nature . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Technology Spin-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Emulation of Nature’s Evolutionary Process . . . . . . . . . . . 26 2.3 Design Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Knowledge—A Definition . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Quest for Engineering Design Knowledge. . . . . . . . . . . . . 29 2.3.3 Novelty and Associated Knowledge Available. . . . . . . . . . 31 2.4 Research Strategy Selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Design Knowledge Utilisation. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.1 Aircraft Conceptual Design Data-Base System (DBS) . . . . 39 2.5.2 Aircraft Conceptual Design Knowledge-Based System (KBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Assessment of the Aircraft Conceptual Design Process. . . . . . . . . . . 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Interrelationship Between Aerospace Vehicle Design and Airworthiness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ix x Contents 3.2.1 Principles of the Certification Process. . . . . . . . . . . . . . . . 48 3.2.2 Some Limitations of Airworthiness Codes. . . . . . . . . . . . . 49 3.2.3 Airworthiness Codes and Design Philosophy. . . . . . . . . . . 51 3.2.4 AeroMech Development Requirements—Airworthiness . . . 54 3.3 Aircraft Conceptual Design Synthesis . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Characteristics of the Conceptual Design Phase. . . . . . . . . 56 3.3.2 Classification and Characterisation of Vehicle Synthesis Efforts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.3 AeroMech Development Requirements—Synthesis System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Methodology of Aerodynamic Project Predictions . . . . . . . . . . . . 67 3.4.1 Configuration Aerodynamics . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Status of Computational Aerodynamics for Conceptual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.3 Design Versus Analysis—Computational Aerodynamics in Vehicle Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4.4 AeroMech Development Requirements—Configuration Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5 Methodology of Stability and Control Project Predictions . . . . . . . 74 3.5.1 Classification of Flight Mechanics . . . . . . . . . . . . . . . . . . 75 3.5.2 Confluence of Stability and Control Theory and Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.5.3 Stability and Control at Conceptual Design Versus Detail Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.4 AeroMechDevelopmentRequirements—ProjectStability and Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Generic Characterisation of Aircraft—Parameter Reduction Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Geometry and Mass Characterisation. . . . . . . . . . . . . . . . . . . . . . 92 4.2.1 Classification of Aircraft Configuration and Concept . . . . . 92 4.2.2 Stability and Control Design Guide Parametrics . . . . . . . . 94 4.3 Configuration Aerodynamics Characterisation. . . . . . . . . . . . . . . . 113 4.3.1 Configuration Aerodynamics Work During Vehicle Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 Identification of Gross Configuration Aerodynamics Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.3 Evaluation of Relevant Aerodynamic Prediction Codes . . . 131

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.