Table Of ContentSpringer Aerospace Technology
Bernd Chudoba
Stability and Control
of Conventional
and Unconventional
Aerospace Vehicle
Configurations
A Generic Approach from Subsonic
to Hypersonic Speeds
Springer Aerospace Technology
The Springer Aerospace Technology series isdevoted tothe technology of aircraft
and spacecraft including design, construction, control and the science. The books
present the fundamentals and applications in all fields related to aerospace
engineering. The topics include aircraft, missiles, space vehicles, aircraft engines,
propulsion units and related subjects.
More information about this series at http://www.springer.com/series/8613
Bernd Chudoba
Stability and Control
of Conventional
and Unconventional
Aerospace Vehicle
fi
Con gurations
A Generic Approach from Subsonic
to Hypersonic Speeds
123
BerndChudoba
Department ofMechanical andAerospace
Engineering
TheUniversity of Texasat Arlington
Arlington, TX,USA
ISSN 1869-1730 ISSN 1869-1749 (electronic)
SpringerAerospace Technology
ISBN978-3-030-16855-1 ISBN978-3-030-16856-8 (eBook)
https://doi.org/10.1007/978-3-030-16856-8
©SpringerNatureSwitzerlandAG2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar
methodologynowknownorhereafterdeveloped.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom
therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard
tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Don’t let your preoccupation with reality
stifle your imagination.
Robert A.Cassanovaand SharonM.Garrison
Acknowledgements
A number of people cooperated in making this work possible, and I would like to
acknowledge their contributions.
The presented methodology concept was developed from 1995 to 1999 at
Cranfield University, England, as part of a research contract with DaimlerChrysler
AerospaceAirbusGmbHundercontractnumberEZFutureProjects80995517.The
research contract was formally funded by the European Supersonic Commercial
Transport (ESCT) project with Dr. Josef Mertens serving as technical monitor for
the first two years. The European trilateral technical cooperation had been estab-
lished by the ESCT project managers Detlef Reimers (DaimlerChrysler Aerospace
Airbus), Phil Green (British Aerospace Airbus) and MichèlePacull (Aérospatiale).
In retrospect, the following lists some of the specialists involved: Ulf Graeber,
Burkhard Kiekebusch, Dirk vonReithandDr.Alexander Van derVelden (Synaps
Inc.) from DaimlerChrysler Aerospace Airbus; Les Hyde, Dr. Clyde Warsop and
Alan Perry from British Aerospace Airbus; Elie Khaski and Joseph Irvoas from
Aérospatiale Aéronautique Airbus, just to mention some.
The views and conclusions contained in this book, however, are those of the
authorandshouldnotbeinterpretedasnecessarilyrepresentingtheofficialpolicies
orendorsements,eitherexpressedorimplied,ofDaimlerChryslerAerospaceAirbus
or any other company.
IamespeciallygratefulforthejointeffortofMikeCookandDr.HowardSmith
at Cranfield University. They knew when to applaud my progress and when to
demandmore.MikeCook’sintimateunderstandingofflightmechanics,hisdevoted
ability of being a teacher for academic and technical issues are clearly an ever-
lasting experience. Howard Smith’s knowledge of aerospace vehicle design, in
particular the computational side, proved to be invaluable during the method
planningphase.Iamthankfulfortheirunbiasedtechnical,academicandpersonal
support throughout the entire research period.
The author gratefully acknowledges the dedicated skill and expertise from the
following individuals, who endured without any hesitation in intensifying the
author’s fascination for aerospace science. I have been fortunate to receive their
vii
viii Acknowledgements
attention, which enhanced disciplinary and multidisciplinary understanding of
technicalandnon-technicalissues:GeorgPoschmann(AirbusIndustrie),Dr.Jean
Roeder (Airbus Industrie), Alan Perry (British Aerospace Airbus), Dr. Clyde
Warsop (BAe Sowerby Research Center), Juergen Hammer (Airbus Industrie),
Joseph Irvoas (Aérospatiale), Robert G. Hoey (USAF), Gerald C. Blausey
(Lockheed Martin), Irving Ashkenas (Northrop, STI), Fred Krafka (Airbus
Industrie), Clyde Warsop (BAe Sowerby Research Center), Professor Mason
(Virginia Tech), Professor Fielding, Professor Howe, Professor Stollery and Pete
Thomasson from Cranfield University.
I wish to acknowledge with deep gratitude the support of my wife, Andrea, and
our children, Elena Sophia and Luca Samuel, for putting up with my very erratic
hoursofworking.Theyallencouragedmethroughtheyearsofmytryingperiodsof
my research life. Andrea helped me through the research period exciting and as
well difficult times. It is to her, my best and beautiful critic, that this book is
dedicated.
Arlington, USA Bernd Chudoba
June 2019
Contents
1 Introduction and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Project Initiation and Motivation. . . . . . . . . . . . . . . . . . 1
1.1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Today’s Aerospace Vehicle Design Problem . . . . . . . . . . . 3
1.1.3 New Aerospace Vehicle Design Problem . . . . . . . . . . . . . 9
1.2 Research Project Aims, Scope, and Objectives . . . . . . . . . . . . . . . 15
1.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Generic Aerospace Vehicle Design—Knowledge Utilisation . . . . . . . 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Prelude—Design Office of Nature . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Technology Spin-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Emulation of Nature’s Evolutionary Process . . . . . . . . . . . 26
2.3 Design Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Knowledge—A Definition . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Quest for Engineering Design Knowledge. . . . . . . . . . . . . 29
2.3.3 Novelty and Associated Knowledge Available. . . . . . . . . . 31
2.4 Research Strategy Selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Design Knowledge Utilisation. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.1 Aircraft Conceptual Design Data-Base System (DBS) . . . . 39
2.5.2 Aircraft Conceptual Design Knowledge-Based System
(KBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3 Assessment of the Aircraft Conceptual Design Process. . . . . . . . . . . 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Interrelationship Between Aerospace Vehicle Design
and Airworthiness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ix
x Contents
3.2.1 Principles of the Certification Process. . . . . . . . . . . . . . . . 48
3.2.2 Some Limitations of Airworthiness Codes. . . . . . . . . . . . . 49
3.2.3 Airworthiness Codes and Design Philosophy. . . . . . . . . . . 51
3.2.4 AeroMech Development Requirements—Airworthiness . . . 54
3.3 Aircraft Conceptual Design Synthesis . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Characteristics of the Conceptual Design Phase. . . . . . . . . 56
3.3.2 Classification and Characterisation of Vehicle Synthesis
Efforts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3 AeroMech Development Requirements—Synthesis
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 Methodology of Aerodynamic Project Predictions . . . . . . . . . . . . 67
3.4.1 Configuration Aerodynamics . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Status of Computational Aerodynamics for Conceptual
Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Design Versus Analysis—Computational Aerodynamics
in Vehicle Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.4 AeroMech Development Requirements—Configuration
Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Methodology of Stability and Control Project Predictions . . . . . . . 74
3.5.1 Classification of Flight Mechanics . . . . . . . . . . . . . . . . . . 75
3.5.2 Confluence of Stability and Control Theory
and Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.3 Stability and Control at Conceptual Design Versus
Detail Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.4 AeroMechDevelopmentRequirements—ProjectStability
and Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4 Generic Characterisation of Aircraft—Parameter Reduction
Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Geometry and Mass Characterisation. . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Classification of Aircraft Configuration and Concept . . . . . 92
4.2.2 Stability and Control Design Guide Parametrics . . . . . . . . 94
4.3 Configuration Aerodynamics Characterisation. . . . . . . . . . . . . . . . 113
4.3.1 Configuration Aerodynamics Work During Vehicle
Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.2 Identification of Gross Configuration Aerodynamics
Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.3 Evaluation of Relevant Aerodynamic Prediction Codes . . . 131