ebook img

Stability analysis of critical nonlinear systems using normal form techniques PDF

136 Pages·1996·4.4 MB·English
by  YanAiguo
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability analysis of critical nonlinear systems using normal form techniques

STABILITYANALYSISOFCRITICALNONLINEARSYSTEMS USINGNORMALFORMTECHNIQUES By AIGUOYAN ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1996 UNIVERSITYOFFLORIDALIBRARIES ToMyWifeWeiXiongandMySonPongpong & ToMyParentsJingzhongandBaiyin ACKNOWLEDGEMENTS IwillalwaysbegratefulfortheopportunityIhavehadtoworkwithmyadvisorand committeechairperson, Dr. CarlaA. Schwartz. I thankherforher academic as well asnonacademicadviceandassistanceduringmystudyatboththeUniversityofFlorida andtheUniversityofVermont. Manyideas inthis dissertation wereinspired through discussionswithher.Thisdissertationwouldnothavebeenpossiblewithoutherdirection, encouragementandsupport. IwouldliketothankDr. HaniphA.Latchman,Dr. JacobHammer,Dr. OscarD. CrisalleandDr. JohnK.Schuellerforservinginmysupervisorycommittee,advisingme onvariousaspectsofthisdissertationandprovidingassistancewheneverandwithwhatever Irequested. Mythanksarealsoofferedtootherprofessors,staffmembersandfriendsinboththe DepartmentofElectricalandComputerEngineeringattheUniversityofFloridaandthe DepartmentofElectricalEngineeringandComputerScienceattheUniversityofVermont. Specialthanksgotomyparentsandparents-in-law,whoneverhesitatetodelivertheir love,encouragementandsupporttoenrichmylife. Finally,Iwouldliketodedicatethis dissertationtomybelovedwife,WeiXiong,whosharedthehappinessandstruggleIexpe- riencedduringtheworkofthisdissertation,andtomyson,Pongpong. iii TABLEOFCONTENTS ACKNOWLEDGEMENTS ffi ABSTRACT vj 1 INTRODUCTION 1 1.1 ProblemFormulation 1 1.2 BriefLiteratureReview 8 1.3 OutlineoftheDissertation 10 2 INTRODUCTIONTOCENTERMANIFOLDTHEORY 13 3 INTRODUCTIONTONORMALFORMTHEORY 21 3.1 IntroductiontoNormalForms 21 3.2 ComputationofNormalForms 32 3.2.1 AGeneralAlgorithmforCoordinateTransformation 32 3.2.2 AProcedureforComputationofNormalForms 38 3.3 FurtherDiscussionaboutNormalForms 40 3.4 Summary 44 4 RELATIONSHIPBETWEENCENTERMANIFOLDANDNORMALFORMTHE- ORIES 45 4.1 EquivalenceofCenterManifolds 45 4.2 NormalFormsofCriticalNonlinearSystems 49 4.3 Relationship 53 4.4 AExample 54 4.5 Summary 58 5 CONSTRUCTIONOFLYAPUNOVFUNCTIONS-I 59 5.1 GeneralProcedureForConstructingLyapunovFunctions 59 5.2 ConstructionofLyapunovFunctionsforNonlinearSystemsinTwoSpecial Cases g3 5.2.1 CASE1:NonlinearSystemswithOneZeroEigenvalue 64 5.2.2 CASE2:NonlinearSystemswithaPairofPurelyImaginaryEigen- values gg 5.3 LyapunovFunctionsintheOriginalCoordinates 69 iv 5.4 ExamplesandDiscussions 73 5.5 Summary 80 6 SIMPLIFICATIONOFLYAPUNOVFUNCTIONS 82 6.1 HeuristicExamples 82 6.2 MainResults: SimplificationofLyapunovFunctions 88 6.3 Examples 92 6.4 Summary 94 7 CONSTRUCTIONOFLYAPUNOVFUNCTIONS-II 96 7.1 AHeuristicExample 96 7.2 MainResults 98 7.3 SimplificationofLyapunovFunctions 102 7.4 ComputationofPartialNormalForms 105 7.5 Examples 109 7.6 Summary 112 8 APPLICATIONS 113 8.1 NonlinearSystemswithMultipleCriticalEigenvalues 113 8.2 NormalFormsForDiscrete-TimeNonlinearSystems 117 8.3 Summary 119 9 SUMMARYOFTHEDISSERTATION 120 REFERENCES 123 BIOGRAPHICALSKETCH 126 v AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy STABILITYANALYSISOFCRITICALNONLINEARSYSTEMS USINGNORMALFORMTECHNIQUES By AiguoYan August1996 Chairperson: Dr. CarlaA.Schwartz MajorDepartment:ElectricalandComputerEngineering Nonlineardynamicalmodelsarisefromboththeoreticalresearchandrealapplications, includingrobotics,aircraftcontrol,adaptivecontrol,chemicalprocess,numericalalgorithm, andpowersystems. Themostimportantanalysisfornonlinearsystemsisthedetermina- tionofstability. Onlycriticalnonlinearsystemsneedfurtherinvestigation,anduptonow, stabilityanalysishasbeenpredominantlyperformedusingcentermanifoldandbifurcation theoriesin combinationwith Lyapunovtechniques. Whenadynamic systemislocally asymptoticallystable(LASinshort),aLyapunovfunctionmustexist.Manysystemprop- erties,suchasstabilityregion,convergencerate,androbustness,areassociatedwithand canbeestimatedusingLyapunovfunctions. Theworkonthedeterminationofthelocal vi stabilityofcriticalnonlinearsystems,ortheconstructionofLyapunovfunctionswhenthey areLAS,isfarfromcomplete. Inthisdissertation,criticalnonlinearsystemsarestudiedusingnormalformtheory. Onceacriticalnonlinearsystemistransformedintoanormalform,thedynamicsofthe criticalstatesaredecoupledlocallyfromthoseofthestablestates.Similartoresultsderived usingcentermanifoldtheory,thestabilityoftheentirenonlinearsystemisdeterminedby that ofcritical dynamics. Therelationship between normalform and center manifold theoriesisthenexplored. Ifthecriticaldynamicsis LAS, andaLyapunovfunctionis available,aLyapunovfunctionfortheentiresystemcanbeeasilyconstructed. The convergenceis not alwaysguaranteedfornormalforms. ConstructionofLya- punovfunctionsforpurelycriticalnonlinearsystemsisonlyknowninafewspecialcases. Therefore,criticalnonlinearsystemsintwospecialcasesarestudiedintensivelyusingap- proximatenormalforms. Theexplicitstabilitycriteria,aswellasexplicitalgorithmsfor constructionofLyapunovfunctions,aredeveloped. MethodsforsimplificationofLyapunov functionsarealsoproposed.TheconstructionofLyapunovfunctionsrequiresderiving(ap- proximate)normalformsandtheassociatedtransformations,andisverycomputationally intensive.Theissueofreducingthecomplexityofcomputingnormalformsandtheassoci- atedLyapunovfunctionsisalsostudied. Criticalnonlinearsystemswithmultiplecritical eigenvaluesareexamined,andsomesufficientconditionsfordeterminingstabilityandcon- structingLyapunovfunctionsareobtained. Thisdissertationdealswithcontinuous-timesystems. Alloftheresultsareapplicable todiscrete-timesystemswithslightmodifications. vii CHAPTER1 INTRODUCTION Nonlineardynamicalmodelsarisefromboththeoreticalresearchandrealapplications, includingrobotics,aircraftcontrol,adaptivecontrol,chemicalprocesses,numericalalgo- rithms,andpowersystems.Themostimportantanalysisfornonlineardynamicalsystems isthedeterminationofstability.Linearsystemtheoryhasbewell-developedinlastdecades. Toacertainextent,thelocalstabilityofanonlinearsystemcanbecompletelycharacterized byitslinearizationattheequilibriumpointofinterest. Thelocalstabilityofanonlinear systemcannotbedeterminedinthecasethatthelinearizationpossessesatleastonecriti- caleigenvaluewhileallothereigenvaluesarestable.Thisdissertationwillstudynonlinear dynamicalsystemswhoselinearizationsexhibitsuchaproperty. Thelocalstabilizability ofnonlinearcontrolsystemspossessinglinearlyuncontrollablecriticaleigenvalueswillalso bediscussed. TheemphasiswillbeontheconstructionofLyapunovfunctionsforcritical nonlinearsystemswhichareknowntobelocallyasymptoticallystable(LAS).Thischapter servesasanintroductiontothedissertation.InSection1.1,wepresentmuchoftheback- groundmaterialwhichwillbeusedthroughoutthisdissertation. Section1.2givesabrief literaturereview.Theorganization,alongwiththemajorcontributions,ofthisdissertation ispresentedinSection1.3. 1.1 ProblemFormulation Inthissection,wepresentmuchofthebackgroundmaterialthatwillbeusedthroughout thisdissertation. 1 2 Amapg:ftC Rm-*RnissaidtobeamapofclassCk(or,simplyCk),denoted asg€ Cfc,forsomenonnegativeintegerkifitspartialderivativesofuptoorderA;with respecttoitsvariablesexistandarecontinuousinft. Ifwecanalwayschoosek—+00, thenwesaythatgisamapofclassC°°(or,simplyC°°). Furthermore,gissaidtobe analytic(denotedasC")ifitisC°°andforeachpointx0€ ftTaylorseriesexpansionof gat£0convergestog(x)foralla;€ ft- Thegoalofthisdissertationistostudythelocalasymptoticstability(LASYinshort) ofnonlineardynamicalsystemsofform *=/(*), xeRn (1.1) where/:ft—Rnisasufficientlydifferentiate(orCkwithksufficientlylarge)mapfrom adomainftCRnintoRn. Anequilibriumsolution(orequilibriumpoint,orsimplyequilibrium)of(1.1)isapoint xo€ ftsuchthat /(x0)=0, i.e.,asolutionwhichdoesnotchangeintime. Forconvenience,westateallthedefinitionsandtheoremsforthecasewhentheequi- libriumpointisattheoriginofRn;i.e.,xQ=0. Thereisnolossofgeneralityindoing thissinceanyequilibriumpointcanbeshiftedtotheoriginviaachangeofvariables[37]. Occasionally, theterm"zerosolution" isused,instead, tosignifythattheoriginisthe equilibriumpointofinterest. 3 Thelinearizationof(1.1)isdefinedas x=Ax, (1.2) whereA=Df(0)isthefirstorderderivative,ortheJacobianmatrixoff(x):Df(x)= df(x)/dx,evaluatedattheorigin. Thedefinitionofeigenvaluesoreigenvectorsiswell- known. ThespectrumofannxnmatrixAisthesetofeigenvaluesofA,anddenoted asa(A)= {Ai,A2,---,An}whereA,needsnottobedifferentfromXj. AssumeAisan eigenvalueofthenxnmatrixA.TheeigenvalueAissaidtobehyperbolicifitsrealpartis nonzero(denotedasRe(X)^0),stableifitsrealpartisnegative(denotedasRe(X)<0), unstableifitsrealpartispositive(denotedasRe(X)>0),andcriticalifitsrealpartis zero(denotedasRe(X)=0). Anonlinearsystemofformof(1.1)issaidtobecriticalif itslinearizationonlypossessesbothstableandcriticaleigenvalues, andpurelycriticalif itslinearizationonlypossessescriticaleigenvalues. Theequilibriumpointx0=0issaid tobehyperbolicifnoneoftheeigenvaluesofA=Df(0)havezerorealpart. Similarly,a nonlinearcontrolsystem x=f(x,u) issaidtobecriticalifthelinearizationaboutx=0;u=0hasatleastonecriticaleigenvalue thatisnotcontrollablewhileallothereigenvaluesarestabilizable. Theterm"stability" hasdifferentdefinitionsindifferent areas. Inthisdissertation, westudythestabilityofnonlinearsystemsinthesenseofLyapunov. Letx(t)denotethe solution(trajectory)ofthesystem(1.1)whichattheinitialtimei0=0passesthroughthe initialpointXo=x(0). Definition1 ([37],[28])Theequilibriumpointx=0of(1.1)is

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.