ebook img

Splitting Methods in Communication, Imaging, Science, and Engineering PDF

822 Pages·2016·41.949 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Splitting Methods in Communication, Imaging, Science, and Engineering

Scientifi c Computation Roland Glowinski Stanley J. Osher Wotao Yin Editors Splitting Methods in Communication, Imaging, Science, and Engineering Splitting Methods in Communication, Imaging, Science, and Engineering Scientific Computation EditorialBoard J.-J.Chattot,Davis,CA,USA P.Colella,Berkeley,CA,USA R.Glowinski,Houston,TX,USA P.Joly,LeChesnay,France D.I.Meiron,Pasadena,CA,USA O.Pironneau,Paris,France A.Quarteroni,Lausanne,Switzerland andPolitecnicoofMilan,Italy J.Rappaz,Lausanne,Switzerland R.Rosner,Chicago,IL,USA P.Sagaut,Paris,France J.H.Seinfeld,Pasadena,CA,USA A.Szepessy,Stockholm,Sweden M.F.Wheeler,Austin,TX,USA M.Y.Hussaini,Tallahassee,FL,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/718 Roland Glowinski • Stanley J. Osher • Wotao Yin Editors Splitting Methods in Communication, Imaging, Science, and Engineering 123 Editors RolandGlowinski StanleyJ.Osher DepartmentofMathematics DepartmentofMathematics UniversityofHouston UCLA Houston,TX,USA LosAngeles,CA,USA WotaoYin DepartmentofMathematics UCLA LosAngeles,CA,USA ISSN1434-8322 ISSN2198-2589 (electronic) ScientificComputation ISBN978-3-319-41587-1 ISBN978-3-319-41589-5 (eBook) DOI10.1007/978-3-319-41589-5 LibraryofCongressControlNumber:2016951957 MathematicsSubjectClassification(2010):49-02,65-06,90-06,68U10,47N10 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Operator-splittingmethodshavebeenaroundformorethanacentury,startingwith theircommonancestor,theLiescheme,introducedbySophusLieinthemid-1870s. ItseemshoweverthatonehadtowaitafterWW2toseethesemethodsjoiningthe computationaland applied mathematics mainstream, the driving force being their applicabilitytothesolutionofchallengingproblemsfromscienceandengineering modeled by partial differential equations. The main actors of this renewed inter- est in operator-splitting methods were mainly Douglas, Peaceman, Rachford, and Wachpress in the USA with the alternating direction implicit (ADI) methods and Dyakonov,Marchuk,and Yanenko in the USSR with the fractionalstep methods. Thesebasicmethodologieshaveknownmanyvariantsandimprovementsandgen- eratedaquiteimportantliteratureconsistingofmanyarticlesandfewbooks,ofthe- oreticaland applied natures, with computationalmechanicsand physicsbeing the mainsourcesofapplications.Inthemid-1970s,tightrelationshipsbetweentheaug- mentedLagrangianmethodsofHestenesandPowellandADImethodswereiden- tified,leadingtothe alternatingdirectionmethodsof multipliers(ADMM).Albeit originatingfromproblemsfromcontinuummechanicsmodeledbypartialdifferen- tialequationsandinequalities,itwasquicklyrealizedthattheADMMmethodology appliestoproblemsoutsidetherealmofpartialdifferentialequationsandinequali- ties,ininformationsciencesinparticular,anareawhereADMMhasenjoyedavery fast-growingpopularity.Themainreasonofthispopularityisthatmostoftenlarge- scale optimization problems have decomposition properties that ADMM can take advantageof,leadingtomodularalgorithms,wellsuitedtoparallelization.Another factorexplainingADMM’sgrowingpopularityduringthelastdecadewasthedis- covery around 2007 of its many commonalitieswith the split-Bregman algorithm widelyusedfirstinimageprocessingandthenincompressedsensing,amongother applications. Late 2012, the three editors of this book were participating in a conference in Hong Kong, the main conference topics being scientific computing, image pro- cessing, and optimization. Since most lectures at the conference had some rela- tions with operator splitting, ADMM, and split-Bregman algorithms, the idea of a book dedicated to these topics was explored, considering the following facts: v vi Preface (i) The practitioners of the above methods have become quite specialized, form- ingsubcommunitieswithveryfewinteractionsbetweenthem.(ii)Newapplications of operator-splitting and related algorithms appear on an almost daily basis. (iii) Thediversificationofthealgorithmsandtheirapplicationshasbecomesolargethat avolumecontainingthecontributionsofarelativelylargenumberofexpertsisnec- essaryinordertointerestalargeaudience;indeed,thelastreviewpublicationson the above topics being quite specialized (as shown in Chapter 1), the editors did theirverybesttoproducealargespectrumvolume. FollowingaSpringeragreementtopublishabookonoperatorsplitting,ADMM, split-Bregman, and related algorithms, covering both theory and applications, ex- pertswereapproachedtocontributetothisvolume.Wearepleasedtosaythatmost ofthementhusiasticallyagreedtobepartoftheproject. Thisbookisdividedinchapterscoveringthehistory,foundations,applications, aswellasrecentdevelopmentsofoperatorsplitting,ADMM,splitBregman,andre- latedalgorithms.Duetosizeandtimeconstraints,manyrelevantinformationcould notbeincludedinthebook:theeditorsapologizetothoseauthorswhosecontribu- tionshavebeenpartiallyortotallyoverlooked. Manythanksareinorder: • First, to the organizersof the December 2012 Hong Kong conferenceon Ad- vances in Scientific Computing, Imaging Sciences and Optimization. Indeed, theinceptionofthisprojecttookplaceduringthismeeting. • To Springerfor acceptingto publishthis volume.The editorsacknowledgein particulartheassistanceprovidedbyAchiDosanjh;shewasinvolvedwiththe projectfromday oneandneverlosther faithin it(andin the editors),despite themany(unavoidable)delaysencounteredduringitscompletion. • Totheauthorsofthevariouschaptersandtothosecolleagueswhoacceptedto reviewthem.Theyarereallytheoneswhobroughtthisbookintoexistence. • ToHengdaWenandTsorng-WhayPanfortheirassistanceonmanyissuesas- sociatedwiththepreparationofthe“manuscript”(someofthemLATEXrelated). Bothofthemsavedthedaymorethanonce. • Tothevariousinstitutionssupportingtheauthors,theeditors,andthereviewers. • ToIndhumathiatSPiGlobalforherleadershipintransforminga complicated manuscriptintoabook Wewouldliketothankalsoallthescientistswhocontributedintheirownwayto operator-splittingandrelatedmethods;theymadethisbookpossible.Amongthem, wewouldliketogiveaspecialtributetoErnieEsserandMichèleSchatzman;their untimelydeparturewas a shock to their friendsand colleagues.Both of them had outstanding contributions to various topics addressed in this book, for which we thankthemanddedicatethisbooktotheirmemory. Houston,TX,USA RolandGlowinski LosAngeles,CA,USA StanleyJ.Osher LosAngeles,CA,USA WotaoYin February2016 Contents 1 Introduction................................................ 1 RolandGlowinski,StanleyJ.Osher,andWotaoYin 1 MotivationandBackground.................................... 1 2 Lie’sSchemes............................................... 3 3 OntheStrangSymmetrizedOperator-SplittingScheme............ 5 4 OntheSolutionoftheSub-initialValueProblems................. 6 5 FurtherCommentsonMultiplicativeOperator-SplittingSchemes.... 7 6 OnADIMethods............................................ 7 7 OperatorSplittinginOptimization.............................. 10 8 BregmanMethodsandOperatorSplitting........................ 14 References..................................................... 15 2 SomeFactsAboutOperator-SplittingandAlternatingDirection Methods.................................................... 19 RolandGlowinski,Tsorng-WhayPan,andXue-ChengTai 1 Introduction................................................. 19 2 Operator-SplittingSchemesfortheTimeDiscretizationofInitial ValueProblems.............................................. 21 2.1 Generalities............................................ 21 2.2 Time-Discretizationof(2.1)byLie’sScheme................ 22 2.3 Time-Discretizationof(2.1)byStrang’sSymmetrizedScheme.. 23 2.4 Time-Discretization of (2.1) by Peaceman-Rachford’s AlternatingDirectionMethod............................. 25 2.5 Time-Discretization of (2.1) by Douglas-Rachford’s AlternatingDirectionMethod ............................. 26 2.6 Time-Discretizationof(2.1)byaFractionalθ-Scheme........ 28 2.7 Two Applications: Smallest Eigenvalue Computation andSolutionofanAnisotropicEikonalEquation............. 30 2.8 Time-Discretizationof(2.1)byaParallelSplittingScheme..... 33 vii viii Contents 3 AugmentedLagrangianAlgorithmsandAlternatingDirection MethodsofMultipliers........................................ 34 3.1 Introduction............................................ 34 3.2 Decomposition-CoordinationMethodsbyAugmented Lagrangians............................................ 35 3.3 OntheRelationshipBetweenAlternatingDirection MethodsandALG2,ALG3............................... 40 4 Operator-SplittingMethodsfortheDirectNumericalSimulation ofParticulateFlow........................................... 41 4.1 Generalities.ProblemFormulation......................... 41 4.2 AFictitiousDomainFormulation.......................... 43 4.3 SolvingProblem(2.79)–(2.84)byOperator-Splitting.......... 46 4.4 NumericalExperiments.................................. 46 5 Operator-SplittingMethodsfortheNumericalSolutionofNonlinear ProblemsfromCondensateandPlasmaPhysics................... 52 5.1 Introduction............................................ 52 5.2 OntheSolutionoftheGross-PitaevskiiEquation............. 52 5.3 OntheSolutionofZakharovSystems....................... 56 6 ApplicationsofAugmentedLagrangianandADMMAlgorithms totheSolutionofProblemsfromImaging........................ 61 6.1 VariationalModelsforImageProcessing.................... 61 6.2 FastNumericalAlgorithmsforVariationalImageProcessing Models Based on Operator- Splitting and Augmented LagrangianMethods(ALM).............................. 68 7 FurtherCommentsandComplements........................... 81 References..................................................... 86 3 OperatorSplitting........................................... 95 ShevMacNamaraandGilbertStrang 1 Introduction................................................. 96 2 SplittingforOrdinaryDifferentialEquations..................... 97 2.1 GaininganOrderofAccuracybyTakinganAverage..........100 2.2 HigherOrderMethods...................................100 2.3 ConvectionandDiffusion.................................101 2.4 AReaction-DiffusionPDE:SplittingLinearfromNonlinear....102 2.5 StabilityofSplittingMethods.............................103 2.6 OrdinarySplittingDoesNOTPreservetheSteadyState.......105 3 BalancedSplitting:ASymmetricStrangSplittingThatPreserves theSteadyState..............................................105 3.1 BalancedSplittingPreservestheSteadyState................106 3.2 SplittingFastfromSlow..................................107 4 AVerySpecialToeplitz-Plus-HankelSplitting....................107 4.1 AllMatrixFunctions f(K)AreToeplitz-Plus-Hankel.........109 4.2 TheWaveEquationIsToeplitz-Plus-Hankel.................111 References.....................................................112 Contents ix 4 ConvergenceRateAnalysisofSeveralSplittingSchemes...........115 DamekDavisandWotaoYin 1 Introduction.................................................116 1.1 Notation...............................................118 1.2 Assumptions...........................................118 1.3 TheAlgorithms.........................................119 1.4 BasicPropertiesofAveragedOperators.....................120 2 SummableSequenceLemma...................................120 3 IterativeFixed-PointResidualAnalysis..........................122 3.1 o(1/(k+1))FPRofAveragedOperators....................122 3.2 o(1/(k+1))FPRofRelaxedPRS.........................125 3.3 O(1/Λ2)ErgodicFPRofFejérMonotoneSequences.........126 k 4 SubgradientsandFundamentalInequalities.......................126 4.1 ASubgradientRepresentationofRelaxedPRS...............127 4.2 OptimalityConditionsofRelaxedPRS......................128 4.3 FundamentalInequalities.................................129 5 ObjectiveConvergenceRates..................................130 5.1 ErgodicConvergenceRates...............................130 5.2 NonergodicConvergenceRates............................132 6 OptimalFPRRateandArbitrarilySlowConvergence..............134 6.1 OptimalFPRRates......................................134 6.2 ArbitrarilySlowConvergence.............................136 7 OptimalObjectiveRates......................................137 7.1 ErgodicConvergenceofMinimizationProblems.............137 7.2 OptimalNonergodicObjectiveRates.......................139 8 FromRelaxedPRStoRelaxedADMM..........................144 8.1 PrimalObjectiveConvergenceRatesinADMM..............145 9 Conclusion..................................................146 References.....................................................146 A FurtherApplicationsoftheResultsofSection3...................149 1.1 o(1/(k+1)2)FPRofFBSandPPA........................149 1.2 o(1/(k+1)2)FPRofOneDimensionalDRS................151 B FurtherLowerComplexityResults..............................152 2.1 ErgodicConvergenceofFeasibilityProblems................152 2.2 OptimalObjectiveandFPRRateswithLipschitzDerivative....152 C ADMMConvergenceRateProofs..............................153 3.1 DualFeasibilityConvergenceRates........................155 3.2 ConvertingDualInequalitiestoPrimalInequalities...........156 3.3 Converting Dual Convergence Rates to Primal ConvergenceRates......................................158 D Examples...................................................159 4.1 FeasibilityProblems.....................................159 4.2 ParallelizedModelFittingandClassification.................160 4.3 DistributedADMM......................................162

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.