ebook img

Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup PDF

730 Pages·2022·10.761 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup

Geosystems Mathematics Willi Freeden Michael Schreiner Spherical Functions of Mathematical Geosciences A Scalar, Vectorial, and Tensorial Setup Second Edition Geosystems Mathematics Series Editors Willi Freeden, Mathematics Department, University of Kaiserslautern, Rhineland-Palatinate, Germany M. Zuhair Nashed, Mathematics Department, University of Central Florida, Orlando, FL, USA Editorial Board Hans-Peter Bunge, Geophysics, Ludwig Maximilian University of Munich, München, Bayern, Germany RoussosG.Dimitrakopoulos,FacultyofEngineering,McGillUniversity,Montreal, QC, Canada Yalchin Efendiev, Texas A&M University, College Station, TX, USA Andrew Fowler, University of Limerick, Limerick, Ireland Bulent Karasozen, Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey Jürgen Kusche, Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Nordrhein-Westfalen, Germany Liqui Meng, Aerospace and Geodesy, Technical University of Munich, Munich, Germany Volker Michel, Geomathematics, University of Siegen, Siegen, Nordrhein-Westfalen, Germany Nils Olsen, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark Helmut Schaeben, TU Bergakademie Freiberg, Freiberg, Sachsen, Germany Otmar Scherzer, University of Vienna, Wien, Wien, Austria Frederik J. Simons, Department of Geosciences, Princeton University, Princeton, NJ, USA Thomas Sonar, Institut für Analysis, Technische Universität Braunschweig, Braunschweig, Niedersachsen, Germany Peter J. G. Teunissen, Delft University of Technology, DELFT, Zuid-Holland, The Netherlands Johannes Wicht, Max Planck Institute for Solar System Research, Göttingen, Niedersachsen, Germany Willi Freeden Michael Schreiner (cid:129) Spherical Functions of Mathematical Geosciences A Scalar, Vectorial, and Tensorial Setup Second Edition Willi Freeden Michael Schreiner Mathematics Department Institut for Computational Engineering ICE University of Kaiserslautern Eastern SwitzerlandUniversity Kaiserslautern, Germany of AppliedSciences Buchs, Switzerland ISSN 2510-1544 ISSN 2510-1552 (electronic) Geosystems Mathematics ISBN978-3-662-65691-4 ISBN978-3-662-65692-1 (eBook) https://doi.org/10.1007/978-3-662-65692-1 1stedition:©Springer-VerlagBerlinHeidelberg2009 2ndedition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer-Verlag GmbH,DE,partofSpringerNature2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhäuser-science.com by the registered companySpringer-VerlagGmbH,DE Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Thisbookisdedicatedtothememoryofour parents, HubertineandWilhelmFreeden, HildeandGerhartSchreiner. Preface SpecialfunctionsappliedinEarth’ssciencesandgeoengineeringareconfrontedwith thecomplexityofareal“potato-like”Earthgeometry,thatisastrikingobstaclepar- ticularlyforallglobalpurposesofmodelingandsimulation.Theobstaclecanonly beovercometosomeextendintoday’smathematics.Theprinciplestofindawayout arefoundinasuitabletransitiontoaregularlystructuredgeometryfortheEarth,viz. a spherical figure. In fact, by modern satellite positioning methods, the maximum deviationoftheactualEarth’ssurfacefromtheaverageEarth’sradius(6371km)can bedeterminedtobelessthan0.4%.So,lookingatthespecialfunctionsavailablein thegeoscientificliteraturetoday,asphericalshapeforpurposesoftheglobalEarthis usedinalmostallpublications.Althoughamathematicalformulationsimplyusing sphericalreferencegeometryamountstoastrongrestriction,itisatleastacceptable foralargenumberofproblems.Thissituationexplainsthestrongneedforspherical mathematicalstructures,tools,andmethodstohandlegeoscientificallyrelevantdata sets of high quality within high accuracy and to improve significantly modeling capabilitiesinEarthsystemresearch. Standard spherical functions since the time of A.M. Legendre, P.S. de Laplace, andC.F.Gaussarepolynomialtrialfunctions,conventionallycalledsphericalhar- monics.Sphericalharmonicsrepresenttheanalogousoftrigonometricfunctionsfor orthogonal(Fourier)expansionsonthesphere.Theuseofsphericalharmonicsindi- verseareasofgeosciencesisawell-establishedprocedure,particularlyforanalyzing scalarpotentialfunctions.Nowadays,referencemodelsfortheEarth’sgravitational andmagneticpotential,forexample,arewidelyknownbytablesofexpansioncoef- ficients,i.e.,thefrequencyconstituentsoftheirpotentials. Inthisrespectitshouldbementionedthatvectorialandtensorialpotentials–even in a spherical Earth’s reference model – have their own nature. Concerning the mathematicalmodeling ofvector andtensor fields,one isusually notinterested in theirseparationintoscalarCartesiancomponentfunctions.Instead,inherentphysical propertiesshould beobserved,for example,theexternal gravitationalfieldis curl- free,themagneticfieldisdivergence-free,theequationsforincompressibleflow,i.e., vii viii Preface theNavier-Stokesequations,implydivergence-freevectorsolutions.Inaspherical nomenclature as intended in our approach, all these physical constraints result in a formulation by certain operators like the surface gradient, surface curl gradient, surface divergence, surface curl, etc. So, the types of vector and tensor spherical harmonicsasproposedheresatisfyadequaterequirementsofsplittingavectorialor tensorial signal into geoscientifically relevant components, thereby avoiding artifi- cialsingularitiesarisingfromtheuseoflocalcoordinates.Basicallytwotransitions areundertakeninourapproachtosphericalharmonics,firsttheextensionfromthe scalartothevectorialcaseisstrictlyrealizedunderphysicalconstraintsandsecond thedefinitionofLegendrefunctionsiscanonicallydescribedunderthephenomenon oftherotationalinvarianceonthesphere.TheLegendrefunctionsactasconstituting elementsforzonalfunctions,i.e.,one-dimensionalfunctionsonlydependingonthe polardistanceoftheirtwoarguments.Allinall,theconceptofsphericalharmonics playsthecentralroleinageomathematicalpresentationofspecialfunctionsreflect- ingthesignificanceofapolynomialnatureinasphericallyshapedglobalEarth.In addition,sphericalharmonicsformthecanonicalcandidatestorepresenttheangular partinaradial/angulardecompositionofsolutionsystemsforLaplace,Helmholtz, Cauchy-Navier,(pre-)Maxwell,andNavier-Stokesequations. Our purpose in this work is to present a textbook that allows the reader to con- centrateonspecialfieldssuchasthegeosphere,hydrosphere,atmosphere,andalso anthroposphere.Inotherwords,thespecialfunctionstobediscussedvarystrongly, dependent on the specific observation and measurement indicators (e.g., in gravi- tation,magnetics,deformation,climate, fluidflow,etc.)andonthe occurringfield characteristics (e.g., as potential field, diffusion field, wave field). Obviously, the differential equation under consideration determines the type of special functions thatareneededinthedesiredreductionprocess. Thebookistoserveasaself-consistentintroductorytextbookfor(graduate)students ofmathematics,geosciences,andgeoengineering.Inaddition,theworkshouldalso beavaluablereferenceforscientistsandpractitionersfacingsphericalproblemsin theirprofessionaltasks.Thepresentsecondeditionisbasedonessentialpartsofthe firsteditionpublishedintheyear2009intheSpringerseries“AdvancesinGeophysi- calandEnvironmentalMechanicsandMathematics”(𝐴𝐺𝐸𝑀2).Evidently,thisfirst edition forms the fundamental foundation for the present book. However, updates and additions were indispensable. The present version thus claims to present the theoryofsphericalfunctionsonthebasisoftoday’sessentialideasandconcepts,but completelyfreeofspecificconcretetemporaleventsofpast,present,andfuture.The resultisaworkwhich,whilescientificallyreflectingthepresentstateofknowledge inatime-relatedmanner,neverthelessclaimstobeoflargelytimelesssignificance for(geo-)mathematicalresearchandteaching. TheauthorsthankM.Z.Nashed,Orlando,foracceptingthebookforpublicationin theseries“GeosystemsMathematics”.TheyareobligedtothankH.Nutz,Kaisers- lautern, for reading carefully all parts of the book and giving valuable comments. Preface ix Finally,theauthorswouldliketothankBirkha¨user,inparticularT.Hempfling,M. Peters,andL.Kunzfortheirobligingnessandcooperation. KaiserslauternandBuchs, WilliFreeden May2022 MichaelSchreiner

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.