Spectroscopy for Amateur Astronomers Recording,Processing,Analysis and Interpretation Thisaccessibleguidepresentstheastrophysicalconceptsbehindastronomicalspectroscopy,coveringboththe theory and the practical elements of recording, processing, analyzing and interpreting your spectra. It covers astronomicalobjects,suchasstars,planets,nebulae,novae,supernovae,andeventssuchaseclipsesandcomet passages.Suitableforanyonewithonlyalittlebackgroundknowledgeandaccesstoamateur-levelequipment, the guide’s many illustrations, sketches and figures will help you understand and practice this scientifically important and growing field of amateur astronomy, up to the level of pro–am collaborations. Accessible to non-academics, it benefits many groups, from novices and learners in astronomy clubs, to advanced students and teachers of astrophysics. This volume is the perfect companion to the Spectral Atlas for Amateur Astronomers, which provides detailed commented spectral profiles of more than 100 astronomical objects. Marc F.M. Trypsteen is a Belgian pharmacist and astronomer, with a background in analytical chemistry and spectroscopy. He has lectured on astronomical spectroscopy at university, high schools, observatories and astronomy clubs. He reviewed the Spectral Atlas in detail and co-authored Spectroscopy for Amateur Astronomers. He is co-founder of the Astro Event Group, Belgium and also of the Astropolis Space Science Center in Ostend, where, in addition to outreach activities, he is responsible for the section on spectroscopy education and research. Richard Walker has been an avid astronomer since he was aged 12. He spent his career in civil engineering, planninglargeprojectssuchaspowerplants,damsandtunnels.Nowretired,inthelast10yearshehasfocused increasingly on stellar astronomy and on the indispensable key to this topic – spectroscopy. He undertook alargeobservingprojecttorecordanddocumentthespectraofthemostimportantastronomicalobjects,and chose to share this gathered information for the benefit of other amateurs worldwide. The Spectral Atlas and Spectroscopy for Amateur Astronomers are the fruits of his labor. He lives near Zürich, in Switzerland. Spectroscopy for Amateur Astronomers Recording, Processing, Analysis and Interpretation Marc F. M. Trypsteen Amateurastronomer,Belgium Richard Walker Amateurastronomer,Switzerland UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107166189 ©MarcF.M.TrypsteenandRichardWalker2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Names:Trypsteen,MarcF.M.|Walker,Richard,1951- Title:Spectroscopyforamateurastronomers:recording,processing,analysis,and interpretation/MarcF.M.Trypsteen,amateurastronomer,Belgium,RichardWalker, amateurastronomer,Switzerland. Description:Cambridge:CambridgeUniversityPress,2017.|Includesbibliographical referencesandindex. Identifiers:LCCN2016036436|ISBN9781107166189(Hardback:alk.paper) Subjects:LCSH:Stars–Spectra.|Spectrumanalysis.|Amateurastronomy. Classification:LCCQB871.T792017|DDC522/.67–dc23 LCrecordavailableathttps://lccn.loc.gov/2016036436 ISBN978-1-107-16618-9Hardback Alsoavailableaspartoftwo-volumeset:ISBN978-1-316-64256-6Twohardbackbooks CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. CONTENTS Preface xi 2.3 Definitions and Notation 9 Acknowledgements xiii 2.3.1 IonizationStageversusDegreeofIonization 9 2.3.2 AstrophysicalNotationfortheIonizationStage 9 1 2.4 The Hydrogen Spectral Series 9 2.4.1 ThePhotonEnergyattheWavelengthsofthe Physical Basics of Spectroscopy 1 H-BalmerSeries 9 2.4.2 ThePhotonEnergyofElectronTransitions 10 1.1 Photons: Carriers of Information andEnergy 1 2.4.3 QuantifiedOrbitalEnergyLevelDiagramofthe 1.1.1 Photons:CarriersofInformation 1 H-BalmerSeries 10 1.1.2 TheWave–ParticleDuality 1 2.4.4 TheLymanLimitofHydrogen 10 1.1.3 TheQuantizationofElectromagnetic 2.4.5 TheBalmerandRydbergEquations 10 Radiation 2 2.4.6 TheBalmer,PaschenandBracketContinua 11 1.1.4 Photons:CarriersofEnergy 2 2.5 Formation and Typology of Astronomical Spectra 11 1.1.5 OtherPropertiesofPhotons 2 2.5.1 Overview 11 1.2 The Electromagnetic Spectrum 2 2.5.2 TheThreeBasicTypesofSpectrainthe 1.2.1 TheUsableSpectralRangeforAmateurs 2 ContextoftheSun 13 1.2.2 TheSelectionoftheSpectralRange 2 2.5.3 MolecularAbsorptionBandSpectrum 13 1.2.3 TerminologyoftheSpectroscopic 2.5.4 MolecularAbsorptionBandwithInversely Wavebands 3 RunningIntensityGradient 13 1.3 Wavelengthand Energy 3 2.5.5 CompositeorIntegratedSpectrum 13 1.3.1 PreliminaryRemarks 3 2.5.6 ReflectanceSpectrum 14 1.3.2 UnitsforEnergyandWavelengthAppliedin Spectroscopy 3 1.3.3 Planck’sEnergyEquation 4 3 1.4 The Continuum and BlackbodyRadiation 4 Quantum Mechanical Aspects of Spectroscopy 15 1.4.1 TheBlackbodyasaPhysicalModelforStellar Radiation 4 3.1 Quantum MechanicalView of Transition 1.4.2 Planck’sRadiationLawandCourseofthe Probabilities 15 ContinuumLevel 4 3.2 The Energy Levels of Multi-Electron Atoms 16 1.4.3 Wien’sDisplacementLaw 5 3.2.1 TheQuantumNumbersn,Ɩ,m,sandParity 1.4.4 EffectiveTemperatureT andthe eff OperatorP 16 Stefan–BoltzmannLaw 5 3.2.2 DipoleTransitions,LaporteRuleandForbidden Transitions 17 2 3.2.3 GrotrianDiagramsofAstrophysicalInterest 18 3.2.4 SpectroscopicNotation:TheTermSymbol 18 Electron Transitions and Formation of the 3.2.5 TheHyperfineStructure 19 Spectra 7 3.3 The Schrödinger Equation 20 2.1 Simple Textbook Example: The Hydrogen Atom 7 3.3.1 PreliminaryRemarks 20 2.2 Transition Types andProbabilities 8 3.3.2 DeBroglie’sElectronWaveModel 20 2.2.1 Absorption 8 3.3.3 TheSchrödingerEquationandAstronomical 2.2.2 Emission 8 Spectroscopy 21 2.2.3 Ionization 8 3.3.4 Time-independentand 2.2.4 Recombination 8 Time-dependentForms 21 2.2.5 ElectronsintheFree–FreeMode 9 3.3.5 Hydrogen 22 vi Contents 4 5.6 Czerny–Turner Spectrograph 46 5.6.1 Overview 46 Types and Function of Dispersive Elements 24 5.6.2 ApplicationofCzerny–Turner 4.1 Physical Principle of Dispersion 24 SpectrographsforAmateurs 47 4.1.1 PreliminaryRemarks 24 5.7 Spectral Information and Required Resolution 47 4.1.2 DispersionbyRefraction 24 4.1.3 DispersionbyDiffraction 26 6 4.2 TheDispersive PrincipleofPrism Spectrographs 26 4.2.1 SpecificGlassTypesfor Recording of the Spectra 49 PrismSpectrographs 27 6.1 VisualObservation of Spectra 49 4.2.2 MinimumAngleofDeviationandAngular 6.1.1 ScotopicorNighttimeVision 49 Dispersion 27 6.1.2 PhotopicorDaytimeVision 49 4.2.3 ResolvingPower:AMeasureofPerformance 30 6.2 RecordingofSpectrawithElectronicImageSensors 50 4.2.4 PracticalApplicationsofPrismsToday 30 6.3 The RecordingSystem: Telescope, 4.3 TheDispersive PrincipleofGrating Spectrograph and Camera 51 Spectrographs 30 6.3.1 PreliminaryRemarks 51 4.3.1 TheGratingEquation 30 6.3.2 LimitingMagnitudeoftheSystem 51 4.3.2 ManufacturingProcessandPerformance 6.3.3 ExposureTimesforGratingSpectrographs 51 Parameters 32 6.3.4 PixelSizeandSamplingwithSlitSpectroscopy 53 4.3.3 AngularDispersion 34 6.3.5 DeterminationoftheSamplingbyaRecorded 4.3.4 GratingDiffractionEfficiency 35 SlitImage 53 6.3.6 AnalyticalDeterminationoftheSampling 54 5 6.3.7 InterferenceFringesandReflectionGhosts 54 6.4 Recordingof Echelle Spectra 54 Types and Function of Spectrographs 36 6.4.1 PreliminaryRemarks 54 5.1 Slitless Spectrographs with 6.4.2 SpecialFeaturesofEchelleSpectra 55 Transmission Grating 36 6.4.3 TheOrientationoftheSpectralImage 55 5.1.1 AvailableTransmissionGratings 36 6.4.4 FocusingoftheSpectralImage 56 5.2 Slit Spectrographswith Reflection or 6.4.5 ExposureTimesforEchelleSpectrographs 56 Transmission Grating 37 6.5 Influences of Mount andGuiding 56 5.2.1 TheClassicalConcept 37 6.5.1 MechanicalandStructuralProblemswithSmall 5.2.2 TheLittrowDesign 37 Mounts 56 5.2.3 ConfigurationsandOptionsforthe 6.5.2 TheOptionofFiberCoupling 56 DevelopmentofSlitSpectrographs 37 6.5.3 ImpactoftheSpectrographLoadtoSmallMounts 57 5.2.4 AnamorphicMagnification 39 6.5.4 TheMountingAngleofSpectrographandCameras 57 5.2.5 SpectrographThroughputandEtendue 40 6.5.5 DocumentationoftheSetup 58 6.5.6 PositioningofFaintObjectsontheSlit 58 5.3 Commercial Slit Spectrographs for Amateur 6.5.7 SpecificRequirementstotheGuidingQuality 58 Applications 41 6.5.8 LoadDistributionandAutoguidingProcesswith 5.3.1 ALPY,ShelyakInstruments 41 SmallMounts 59 5.3.2 DADOS,BaaderPlanetarium 41 6.5.9 Autoguiding:InteractionofHardwareand 5.3.3 LhiresIII,ShelyakInstruments 41 SoftwareComponents 59 5.3.4 LISA,ShelyakInstruments 41 6.5.10 SpectroscopicAspectsoftheGuideStar 59 5.3.5 Minispec,AstroSpectroscopyInstruments 41 6.5.11 RecordingofCloseBinaryStarComponents 60 5.3.6 SpectraL200,JTWAstronomy 41 5.3.7 StarlightXpressSX,StarlightXpress 41 7 5.4 Echelle Spectrograph 43 5.4.1 Overview 43 Processing of Recorded Spectra 61 5.4.2 BasicDesignsofEchelleSpectrographs 44 7.1 Available Software for Data Reduction 61 5.5 Commercial Echelle Spectrographs for Amateur 7.1.1 SoftwarePackagesfortheAmateur 61 Applications 45 7.1.2 ProfessionalSoftwarePackages 62 5.5.1 BACHESSpectrograph,BaaderPlanetarium 45 7.1.3 Spectroscopy@Cyberspace:TheVirtual 5.5.2 eShel,ShelyakInstruments 45 Observatory 62 5.5.3 SQUES,Eagleowloptics 45 Contents vii 7.2 From the Recorded Spectrum to theCalibrated 9.1.3 PeakIntensityI andEnergyFluxFofa P Intensity Profile 63 SpectralLine 76 7.2.1 PreliminaryRemarks 63 9.1.4 PeakIntensityandEnergyFluxofan AbsorptionLine 76 7.3 Removal of Light Pollution and Airglow 63 9.1.5 PeakIntensityandEnergyFluxofan 7.3.1 ObjectsofPoint-shapedAppearance 63 EmissionLine 77 7.3.2 ObjectsAppearingas2D 63 9.1.6 EnergyFluxoftheContinuum 77 7.4 Removal of Remaining Hot Pixels and Cosmics 63 9.1.7 SuperpositionofEmissionand 7.5 Dark-frames and Flat-fielding 65 AbsorptionLines 77 7.5.1 Dark-frames 65 9.1.8 TheContinuum-RelatedPeakIntensityP 78 7.5.2 Flat-fields 65 9.1.9 TheContinuum-RelatedEnergyFlux: 7.6 Processing of Echelle Spectra 65 EquivalentWidthEW 78 7.6.1 TheProcessingofanEntireEchelleSpectrum 65 9.1.10 NormalizedEquivalentWidthWλ 79 7.6.2 TheProcessingofIndividualOrders 66 9.1.11 FullWidthatHalfMaximumHeight(FWHM) 79 7.6.3 SubtractionoftheSkyBackgroundandLight 9.1.12 HalfWidthatHalfDepth(HWHDorHWHM) 79 Pollution 66 9.1.13 FullWidthatZeroIntensity(FWZI) 79 9.1.14 HalfWidthatZeroIntensity(HWZI) 80 8 9.1.15 MeasurementofAsymmetry 80 9.1.16 InfluenceoftheSpectrographResolution Calibration of the Spectra 67 ontheFWHMandEWValues 80 9.1.17 AdditionalMeasurementOptions 81 8.1 Calibration of theWavelength 67 8.1.1 PreliminaryRemarks 67 9.2 Shape and Intensity of Spectral Lines 81 8.1.2 RelativeCalibrationBasedonKnownLines 67 9.2.1 TheShapeofAbsorptionLines 81 8.1.3 AbsoluteCalibrationwithLightSources 67 9.2.2 TheShapeofEmissionLines 81 8.1.4 AbsoluteCalibrationbyUnshifted 9.2.3 TheInformationContentoftheLineShape 81 WavelengthsofAtmosphericH OLines 67 9.2.4 Blends 81 2 8.1.5 LinearandNonlinearCalibration 67 9.3 Identification of Spectral Lines 82 8.1.6 PracticalAspectstoMinimizeSourcesofErrors 69 9.3.1 TaskandRequirements 82 8.1.7 HeliocentricandGeocentricCorrections 69 9.3.2 PracticalProblemsandStrategies 8.1.8 TheSelectionoftheCalibrationLightSource 69 forSolvingThem 82 8.1.9 TheFeedingoftheCalibrationLight 69 9.3.3 ToolsfortheIdentificationofSpectralLines 82 8.2 Calibration of theSpectral Flux Density(Intensity) 70 9.4 Temperature Related Appearance of Elements and 8.2.1 PreliminaryRemarks 70 Molecules in theSpectra 83 8.2.2 SelectiveAttenuationoftheContinuumIntensity 70 8.2.3 ProportionalAttenuationoftheSpectralLines 71 10 8.2.4 InformationContentofthe Pseudo-Continuum 71 Temperature and Luminosity 85 8.2.5 ProportionalProceduresforthe 10.1 Information ContentoftheSpectral RelativeFluxCalibration 72 Classification 85 8.2.6 RectificationoftheContinuumIntensity 72 10.1.1 TheHertzsprung–RussellDiagram 85 8.2.7 RelativeFluxCalibrationbyaSynthetic 10.1.2 InformationContent 85 Continuum 73 10.1.3 SpectralClass,StellarMassand 8.2.8 RelativeFluxCalibrationbyRecorded LifeExpectancy 85 StandardStars 74 10.1.4 TheEvolutionoftheSunintheHRD 86 8.2.9 AbsoluteFluxCalibration 74 10.1.5 TheEvolutionofMassiveStars 87 8.2.10 TasksandRequiredCalibrationProcedures 75 10.2 Measurement of the Stellar Effective Temperature T 87 9 eff 10.2.1 Introduction 87 Analysis of the Spectra 76 10.2.2 TemperatureEstimationbytheSpectralClass 87 10.2.3 TemperatureEstimationbyApplyingWien’s 9.1 Measurementof SpectralLines 76 DisplacementLaw 88 9.1.1 MeasurementoftheWavelengthinaSpectral 10.2.4 TemperatureDeterminationBased Profile 76 onIndividualLines 89 9.1.2 IntensityMeasurementinaSpectralProfile 76 10.2.5 The“BalmerThermometer” 89 viii Contents 10.3 SpectroscopicDistance Measurement 90 12.1.7 TheRotationalVelocityofStars 106 10.3.1 OptionsforSpectroscopicDistance 12.1.8 EmpiricalEquationsforvsiniinFunction Measurement 90 ofFWHM 107 10.3.2 TermandPrincipleofSpectroscopicParallax 91 12.1.9 CalibrationEquationsbyF.Fekel 107 10.3.3 SpectralClassandAbsoluteMagnitude 91 12.1.10 SuitableMetalLinesfortheFWHM 10.3.4 Wilson–BappuEffect 91 Measurement 107 10.3.5 AbsoluteVisualMagnitudeIndicatorby 12.1.11 RotationalVelocityofCircumstellar Millward–Walker 92 DisksaroundBeStars 108 10.3.6 DistanceModulusandEstimationofthe 12.1.12 EmpiricalEquationsfortheRotational Distance 92 VelocityoftheDisk 108 12.1.13 DistributionoftheRotational 11 VelocitywithintheDisk 108 12.1.14 AnalysisofDoublePeakProfiles 108 Expansion and Contraction 93 12.1.15 TheOuterDiskRadiusRs 109 12.2 EstimationofOrbitalElementsinBinarySystems 109 11.1 Radial Velocityand Expansion of the 12.2.1 Introduction 109 SpacetimeLattice 93 12.2.2 TermsandDefinitions 110 11.1.1 TheRadialVelocity 93 12.2.3 SomeBasicsofCelestialMechanics 110 11.1.2 TheClassicalDopplerEffect 93 12.2.4 SpatialOrientationoftheOrbitPlane 110 11.1.3 TheSpectroscopicDopplerEquation 94 12.2.5 AnalysisoftheDopplerShiftΔλin 11.1.4 Thez-Value:AFundamentalMeasureof SB2Systems 111 ModernCosmology 94 12.2.6 TheCalculationoftheIndividualRadial 11.1.5 TheRelativisticDopplerEquation 94 VelocitiesofM andM 112 11.1.6 MeasurementoftheDopplerShiftand 1 2 12.2.7 TheEstimationofSomeOrbital DeterminationofRadialVelocity 95 ParametersinSB2Systems 112 11.1.7 RadialVelocitiesofNearbyStars 95 11.1.8 RelativeDopplerShiftwithina SpectralProfile 95 13 11.1.9 RadialVelocityofGalaxies 95 Gravity, Magnetic Fields and Element 11.1.10 TheExpansionoftheSpacetimeLattice 95 11.1.11 TheApparentDilemmaatz>1 96 Abundance 114 11.1.12 Thez-Value:ConsideredasaMeasurefor 13.1 Measurement of the SurfaceGravity 114 thePast 96 13.1.1 Overview 114 11.1.13 MessierGalaxies:RadialVelocityand 13.1.2 MethodBasedontheWilson–BappuEffect 114 CosmologicalSpacetimeExpansion 97 13.1.3 FurtherSurfaceGravityIndicators 114 11.1.14 TheRedshiftofQuasar3C273 97 13.2 Measurement of StellarMagnetic Fields 116 11.1.15 TheGravitationalRedshiftorEinsteinShift 97 13.2.1 Overview 116 11.1.16 AgeEstimationoftheUniverse 97 13.2.2 TheZeemanEffect 116 11.2 Measurementof Expansion and Contraction 99 13.2.3 SpectralLineswithStrongLandéFactors 117 11.2.1 PCygniProfiles 99 13.2.4 PossibleApplicationsforAmateurs 117 11.2.2 InversePCygniProfiles 100 13.3 Abundance of Elements 117 11.2.3 BroadeningoftheEmissionLines 100 13.3.1 AstrophysicalDefinitionof 11.2.4 SplittingoftheEmissionLines 101 ElementAbundance 117 13.3.2 AstrophysicalDefinitionofMetallicity 12 Z(MetalAbundance) 117 13.3.3 QuantitativeDeterminationof Rotation and Orbital Elements 103 theAbundance 118 12.1 Measurementof Rotational Velocity 103 13.3.4 RelativeAbundanceofStarsofSimilar 12.1.1 TermsandDefinitions 103 SpectralClass 118 12.1.2 TheRotationalVelocityof Apparent3DObjects 103 14 12.1.3 TheRotationalVelocityofLargePlanets 104 12.1.4 TheRotationalVelocityofGalaxies 104 Analysis of Emission Nebulae 120 12.1.5 ExampleofaLightReflectingObject 104 14.1 The Balmer Decrement 120 12.1.6 ExampleofaSelf-LuminousCelestialBody 105 14.1.1 Introduction 120 Contents ix 14.1.2 DefinitionoftheBalmerDecrement 120 14.2.11 CoolingMechanismbyForbidden 14.1.3 TheoreticalBalmerDecrementforEmission Transitions 127 Nebulae 120 14.2.12 InfluencesofT,N andTransition e e 14.1.4 BalmerDecrementsatStellarandother ProbabilityAontheCoolingMechanism 127 AstronomicalObjects 121 14.2.13 EstimationofT andN bytheOIIIand e e 14.1.5 ApplicationsoftheBalmerDecrementinthe NIIMethods 128 AmateurSector 121 14.2.14 EstimationoftheElectronDensitybythe 14.1.6 MeasurementoftheBalmerDecrementby SIIandOIIRatio 129 Amateurs 122 14.1.7 SpectroscopicEstimationofInterstellar 15 Extinction 122 14.1.8 ExtinctionCorrectionbytheMeasured Amateurs and Astronomical Science 130 BalmerDecrement 122 15.1 Participation in AstronomicalResearch 130 14.1.9 BalmerDecrementandColorExcess 122 15.1.1 AstronomicalSpectroscopyandthe 14.2 Plasma Diagnostics for Emission Nebulae 123 Pro–AmCulture 130 14.2.1 PreliminaryRemarks 123 15.1.2 TheStructureofaPro–AmCollaboration 131 14.2.2 ThePhotoionizationinEmissionNebulae 123 15.2 Observation Campaigns for Amateurs 132 14.2.3 KineticEnergyandMaxwellianVelocity 15.3 Contributions by Amateurs 133 DistributionofElectrons 123 14.2.4 SignificantProcesseswithinIonizedNebular 15.3.1 Short-termCampaign(Months) 133 Plasmas 123 15.3.2 Long-termCampaign(Years) 133 14.2.5 RecombinationProcess(CaseA) 123 14.2.6 LineEmissionbyElectronTransitions Appendix A Abbreviations, Acronyms and Common Units 134 (CaseB) 124 Appendix B Absolute Magnitudes ofMain Sequence Stars 137 14.2.7 LineEmissionbyCollisionExcitation Appendix C The Solar Echelle Spectrum: An Aid to (CaseC) 124 Orientation 139 14.2.8 LineEmissionbyDirectAbsorption Appendix D Flip Mirror and Calibration Light Source 142 (CaseD) 124 14.2.9 LineEmissionbyForbiddenTransitions 125 Referencesand Further Reading 143 14.2.10 SchemeoftheFluorescenceProcessesin Index 148 EmissionNebulae 126
Description: