ebook img

Spectral Theory and Quantum Mechanics: With an Introduction to the Algebraic Formulation PDF

752 Pages·2013·4.758 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral Theory and Quantum Mechanics: With an Introduction to the Algebraic Formulation

Dedicatedtothoseyoungandbrilliantcolleagues,mathematicians andphysicists,forcedtofleeItalyforothercountriesinorder togivetheircontribution,bigorsmall,toscientificresearch. UNITEXT – La Matematica per il 3+2 Volume 64 Forfurthervolumes: http://www.springer.com/series/5418 Valter Moretti Spectral Theory and Quantum Mechanics With an Introduction to the Algebraic Formulation ValterMoretti DepartmentofMathematics UniversityofTrento Translatedby:SimonG.Chiossi,DepartmentofMathematics,PolitecnicodiTorino Translated and extended version of the original Italian edition: V. Moretti, Teoria SpettraleeMeccanicaQuantistica,©Springer-VerlagItalia2010 UNITEXT–LaMatematicaperil3+2 ISSN2038-5722 ISSN2038-5757(electronic) ISBN978-88-470-2834-0 ISBN978-88-470-2835-7(eBook) DOI10.1007/978-88-470-2835-7 LibraryofCongressControlNumber:2012945983 SpringerMilanHeidelbergNewYorkDordrechtLondon ©Springer-VerlagItalia2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordis- similarmethodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationare briefexcerptsinconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyfor thepurposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaser ofthework.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisions oftheCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemust alwaysbeobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkatthe CopyrightClearance Center.ViolationsareliabletoprosecutionundertherespectiveCopyright Law. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispub- licationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibility foranyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied, withrespecttothematerialcontainedherein. 9 8 7 6 5 4 3 2 1 Cover-Design:BeatriceB,Milano TypesettingwithLATEX:PTP-Berlin,ProtagoTEX-ProductionGmbH,Germany (www.ptp-berlin.de) PrintingandBinding:GrafichePorpora,Segrate(MI) PrintedinItaly Springer-VerlagItaliaS.r.l.,ViaDecembrio28,I-20137Milano SpringerisapartofSpringerScience+BusinessMedia(www.springer.com) Preface Imusthavebeen8or9whenmyfather,amanoflettersbutwell-readineverydis- ciplineandwithacuriousmind,toldmethisstory:“AgreatscientistnamedAlbert Einsteindiscoveredthatanyobjectwithamasscan’ttravelfasterthanthespeedof light”.TomybewildermentIreplied,boldly:“Thiscan’tbetrue,ifIrunalmostat thatspeedandthenacceleratealittle,surelyIwillrunfasterthanlight,right?”.My father wasadamant: “No,it’simpossible todowhatyousay, it’saknownphysics fact”.AfterawhileIadded:“Thatbloke,Einstein,must’vecheckedthisthingmany times...howdoyousay,hedidmanyexperiments?”.TheanswerIgotwasutterly unexpected:“No,notevenoneIthink,heusedmaths!”. What did numbers and geometrical figures have to do with the existence of a limitspeed?Howcouldonestandbehindsuchanapparentlynonsensicalstatement astheexistence ofamaximumspeed,althoughcertainlytrue(Itrustedmyfather), just based on maths? How could mathematics have such big a control on the real world?Andphysics?Whatonearthwasit,andwhatdidithavetodowithmaths? ThiswasoneofthemostbeguilingandirresistiblethingsIhadeverheardtillthat moment...Ihadtofindoutmoreaboutit. Thisisanextendedandenhanced versionofanexistingtextbookwritteninItalian (andpublishedbySpringer-Verlag).Thateditionandthisonearebasedonacommon partthatoriginated,inpreliminaryform,whenIwasaPhysicsundergraduateatthe University of Genova. The third-year compulsory lecture course called Institutions ofTheoreticalPhysicswasthesecondexamthathaduspupilsseriouslyclimbingthe walls(thefirstbeingthefamousPhysicsII,coveringthermodynamicsandclassical electrodynamics). QuantumMechanics,taughtinthatcourse,elicitedanovelandinvolvedwayof thinking,atruechallengeforcravingstudents:formonthswehesitantlyfalteredona hazyanduncertainterrain,notunderstandingwhatwasreallykeyamongthenotions weweretrying–struggling,Ishouldsay–tolearn,togetherwithacompletelynew formalism:linearoperatorsonHilbertspaces.Atthattime,actually,wedidnotreal- isewewereusingthismathematicaltheory,andformanymatesofminethematter VI Preface wouldhavebeen,rightlyperhaps,completelyfutile;Dirac’sbravectorswerewhat theywere,andthat’sit!Theywerecertainlynotelementsinthetopologicaldualof the Hilbert space. The notions of Hilbert space and dual topological space had no right of abode in the mathematical toolbox of the majority of my fellows, even if theywouldsooncomebackinthroughtthebackdoor,withthecourseMathematical MethodsofPhysicstaughtbyprof.G.Cassinelli.Mathematics,andthemathematical formalisation of physics, had always been my flagship to overcome the difficulties thatstudyingphysicspresentedmewith,tothepointthateventually(afteraPh.D.in theoreticalphysics)Iofficiallybecameamathematician.Armedwithamathsback- ground–learntinanextracurricularcourseofstudythatIcultivatedovertheyears, inparalleltoacademicphysics–andeagertobroadenmyknowledge,Itriedtoform- aliseeverynotionImetinthatnewandrivetinglecturecourse.AtthesametimeI was carrying along a similar project for the mathematical formalisation of General Relativity,unawarethattheworkputintoQuantumMechanicswouldhavebeenin- commensurablybigger. The formulation of the spectral theorem as it is discussed in §8, 9 is the same IlearntwhentakingtheTheoreticalPhysicsexam,whichforthisreasonwasadia- logueofthedeaf.Latermyinterestturnedtoquantumfieldtheory,atopicIstillwork ontoday,thoughintheslightlymoregeneralframeworkofquantumfieldtheoryin curvedspacetime.Notwithstanding,myfascinationwiththeelementaryformulation ofQuantumMechanicsneverfadedovertheyears,andtimeandagainchunkswere addedtotheopusIbegunwritingasastudent. Teaching Master’s and doctoral students in mathematics and physics this ma- terial,therebyinflictingonthemtheresultofmyeffortstosimplifythematter,has provedtobecrucialforimprovingthetext;itforcedmetotypesetinLATEXthepile ofloosenotesandcorrectseveralsections,incorporatingmanypeople’sremarks. ConcerningthisIwouldliketothankmycolleagues,thefriendsfromthenews- groupsit.scienza.fisica,it.scienza.matematicaandfree.it.scienza.fisica,andthemany students–someofwhicharenowfellowsofmine–whocontributedtoimprovethe preparatorymaterialofthetreatise,whetherdirectlyofnot,inthecourseoftime:S. Albeverio,P.Armani,G.Bramanti,S.Bonaccorsi,A.Cassa,B.Cocciaro,G.Collini, M.DallaBrida,S.Doplicher,L.DiPersio,E.Fabri,C.Fontanari,A.Franceschetti, R.Ghiloni,A.Giacomini,V.Marini,S.Mazzucchi,E.Pagani,E.Pelizzari,G.Tes- saro,M.Toller,L.Tubaro,D.Pastorello,A.Pugliese,F.SerraCassano,G.Ziglio, S.Zerbini.Iamindebted,forvariousreasonsalsounrelatedtothebook,tomylate colleague Alberto Tognoli. My greatest appreciation goes to R. Aramini, D. Cada- muroandC.Dappiaggi,whoreadvariousversionsofthemanuscriptandpointedout anumberofmistakes. I am grateful to my friends and collaborators R. Brunetti, C. Dappiaggi and N. Pinamontiforlastingtechnicaldiscussions,suggestionsonmanytopicscoveredand forpointingoutprimaryreferences. LastlyIwouldliketothankE.Gregoriofortheinvaluableandon-the-spottech- nicalhelpwiththeLATEXpackage. Preface VII InthetransitionfromtheoriginalItaliantotheexpandedEnglishversionamas- sive number of (uncountably many!) typos and errors of various kind have been amended. I owe to E. Annigoni, M. Caffini, G. Collini, R. Ghiloni, A. Iacopetti, M. Oppio and D. Pastorello in this respect. Fresh material was added, both math- ematical and physical, including a chapter, at the end, on the so-called algebraic formulation. In particular, Chapter 4 contains the proof of Mercer’s theorem for positive Hilbert–Schmidtoperators.Thenow-deeperstudyofthefirsttwoaxiomsofQuantum Mechanics,inChapter7,comprisesthealgebraiccharacterisationofquantumstates ∗ intermsofpositivefunctionalswithunitnormontheC -algebraofcompactoperat- ∗ ∗ ors.GeneralpropertiesofC -algebrasand -morphismsareintroducedinChapter8. Asaconsequence,thestatementsofthespectraltheoremandseveralresultsonfunc- tional calculus underwent a minor but necessary reshaping in Chapters 8 and 9. I incorporated in Chapter 10 (Chapter 9 in the first edition) a brief discussion on abstract differential equations in Hilbert spaces. An important example concerning Bargmann’s theorem was added in Chapter 12 (formerly Chapter 11). In the same chapter,afterintroducingtheHaarmeasure,thePeter–Weyltheoremonunitaryrep- resentationsofcompactgroupsisstated,andpartiallyproved.Thisisthenappliedto thetheoryoftheangularmomentum.Ialsothoroughlyexaminedthesuperselection rulefortheangularmomentum.ThediscussiononPOVMsinChapter13(formerly Chapter12)isenrichedwithfurthermaterial,andIincludedaprimeronthefunda- mentalideasofnon-relativisticscatteringtheory.Bell’sinequalities(Wigner’sver- sion)aregivenconsiderablymorespace.Attheendofthefirstchapterbasicpoint-set topologyisrecalledtogetherwithabstractmeasuretheory.Theoverallefforthasbeen tocreateatextasself-containedaspossible.Iamawarethatthematerialpresented has clear limitations and gaps. Ironically – my own research activity is devoted to relativistic theories – the entire treatise unfolds at a non-relativistic level, and the quantumapproachtoPoincaré’ssymmetryisleftbehind. I thank my colleagues F. Serra Cassano, R. Ghiloni, G. Greco, A. Perotti and L. Vanzo for useful technical conversations on this second version. For the same reason,andalsofortranslatingthiselaborateopustoEnglish,Iwouldliketothank mycolleagueS.G.Chiossi. Trento,September2012 ValterMoretti This page intentionally left blank Contents 1 Introductionandmathematicalbackgrounds...................... 1 1.1 Onthebook ............................................... 1 1.1.1 Scopeandstructure .................................. 1 1.1.2 Prerequisites ........................................ 4 1.1.3 Generalconventions.................................. 4 1.2 OnQuantumMechanics..................................... 5 1.2.1 QuantumMechanicsasamathematicaltheory............ 5 1.2.2 QMinthepanoramaofcontemporaryPhysics............ 7 1.3 Backgroundsongeneraltopology............................. 10 1.3.1 Open/closedsetsandbasicpoint-settopology ............ 10 1.3.2 Convergenceandcontinuity ........................... 12 1.3.3 Compactness........................................ 14 1.3.4 Connectedness ...................................... 15 1.4 Round-uponmeasuretheory................................. 16 1.4.1 Measurespaces...................................... 16 1.4.2 Positiveσ-additivemeasures .......................... 19 1.4.3 Integrationofmeasurablefunctions..................... 22 1.4.4 Riesz’stheoremforpositiveBorelmeasures ............. 25 1.4.5 Differentiatingmeasures .............................. 27 1.4.6 Lebesgue’smeasureonRn ............................ 27 1.4.7 Theproductmeasure ................................. 31 1.4.8 Complex(andsigned)measures........................ 32 1.4.9 Exchangingderivativesandintegrals.................... 33 2 NormedandBanachspaces,examplesandapplications ............ 35 2.1 NormedandBanachspacesandalgebras....................... 36 2.1.1 Normedspacesandessentialtopologicalproperties........ 36 2.1.2 Banachspaces....................................... 40 2.1.3 Example:theBanachspaceC(K;Kn),thetheoremsofDini andArzelà–Ascoli ................................... 42

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.