Table Of ContentSpecial values of L-functions and false Tate curve
8 extensions II
0
0
2 ThanasisBouganis
n
a February 3,2008
J
5
2
Abstract
] Inthispaperweshowhowonecancombinethep-adicRankin-Selbergproduct
T constructionofHidawithfreenessresultsofHeckemodulesofWilestoestablish
N interestingcongruencesbetweenspecialvaluesofL-functions.Thesecongruences
. isapartofsomedeepconjecturalcongruencesthatfollowfromtheworkofKato
h onthenon-commutativeIwasawatheoryofthefalseTatecurveextension.
t
a
m
1 Introduction
[
1 LetEbeanellipticcurvedefinedoverQandparationalprime.Intheclassicalsetting
v ofcyclotomicIwasawatheoryforellipticcurvesoneisconcernedwiththestudyofthe
9
twistsoftheellipticcurvebyfiniteordercharacterthatfactorthroughthecyclotomic
3
9 ZpextensionQcyc n≥0Q(µpn),whereµpn isthegroupofthepn-throotsofunity.
⊂∪
3 TheaimofthetheoryistoobtainalinkbetweentheanalyticallydefinedLfunctions
. attached to E, and its twists, and the arithmetic properties of the elliptic curve over
1
0 the cyclotomic tower. The cyclotomic Main Conjecture for elliptic curves gives to
8 thisconjecturallinkaverypreciseform. Wenotethatmuchhasalreadybeenproven
0 towardsthisMainConjecturebyKato[19],andSkinnerandUrbanhaveannounceda
:
v completeprooffor semi-stable E, subject to provingcertain results aboutthe Galois
i representationsattachedtoautomorphicforms.
X
One of the key ingredients of the above Main Conjecture are the p-adic L func-
r
a tions. Theseareusuallyrealizedasp-adicmeasuresoverGaloisgroups,which,when
evaluated at finite order characters, interpolate canonically modified values of the L
function. Theirconstructionusuallyinvolvestwosteps. Thefirstoneistofindproper
transcendentalnumbers,usuallycalledperiods,suchthattheratiooftheLvaluesover
theseperiodsgivesanalgebraicnumber.Thesecondstepistoprovethatthesevalues,
oraslightmodificationofthem,havethedesiredinterpolationandintegralityproper-
ties.
Lately there has been great interest in extending the classical Iwasawa theory to
a non abelian setting, that is to replace the Z extension by more generalp-adic Lie
p
extensionswhoseGaloisgroupisnon-abelian. Infactin[5]apreciseanalogueofthe
MainConjectureinthisnonabeliansettingforalargefamilyofp-adicLiegroupshas
beenstated.
1
1 INTRODUCTION 2
Oneoftheextensionsthatisofparticularinterestisthesocalled“falseTatecurve”
extensions. Thatisextensionsoftheform,QFT := n≥0Q(µpn, p√n m)forsomep-
∪
powerfreeintegerm > 1. NotethattheGaloisgroupisthesemi-directproductZ ⋉
p
Z×.Thereisaconjecturaltheoryforp-adicLfunctionsthatshouldexistinthissetting.
p
InaworkwithV.Dokchitser[4]wehaveaddressedthefirstoftheabovementionedtwo
steps,thatisalgebraicityofthecriticalvaluesoftheLfunctionsinvolved.
Inordertomakethingsmoreexplicitletusfixsomemorenotation.WewriteEfor
anellipticcurvedefinedoverQandN foritsconductor.Aswealreadymentionedwe
E
considertheextensionsQFT,n := Q(µpn, p√n m)andQFT = n≥0QFT,n. Wewrite
∪
ρ foranArtin representationthatfactorsthroughQ andN foritsconductor. Let
FT ρ
usalsowriteL(E,ρ,s)fortheLfunctionattachedtoEtwistedbyρ. Weconsiderthe
valueofL(E,ρ,s)atthecriticalpoints=1. ThefactthattheArtinrepresentationsρ
factorthroughthefalseTatecurveallowedustoestablishtheanalyticityofL(E,ρ,s)
ats = 1andthenourmainresultin[4]isconcernedwiththealgebraicpropertiesof
thesevalues. LetuswriteΩ (E)fortheNe´ronperiodsattachedtotheellipticcurve
±
E. Thenwehaveshownthat
L(E,ρ,1)
Q.
Ω (E)dim(ρ+)Ω (E)dim(ρ−) ∈
+ −
forallArtinrepresentationsρthatfactorthroughQ . Actuallywedidmore.Namely,
FT
involvingalsotheperiodthatshouldcorrespondtothe“Artinmotive”M(ρ)attached
toρweestablishedtheperiodconjectureofDelignethatgivesaprecisedescriptionof
thenumberfieldwherethisvaluelies.
Let us now move to the second step that we mentioned above, that is the p-adic
properties of these values. From now on we will assume that the elliptic curve has
good ordinary reduction at p. We start by stating a conjectural congruence between
theseLvaluesfordifferentArtinrepresentations.WedefinethequantityR(ρ)as
P (ρˆ,u−1) L (E,ρ,1)
R(ρ):=e (ρ)u−vp(Nρ) p {p,q|m}
p P (ρ,w−1) · Ω (E)dim(ρ+)Ω (E)dim(ρ−)
p + −
where e (ρ) is a local epsilon factor of ρ suitably normalized, P (ρ,X) is the usual
p p
characteristicpolynomialassociatedtoρatpandu,warep-adicnumbersdefinedby,
1 a X +pX2 =(1 uX)(1 wX), u Z× and p+1 a =#E (F )
− p − − ∈ p − p p p
HereρˆisthedualrepresentationbutinourfalseTatecurvesettingitiseasytoseethat
ρˆ=ρ. Finallythesubscript p,q m meansthatwehaveremovedtheEulerfactorsat
∼ { | }
theseprimes. Thenwestate,
Conjecture: Foreachn 1,letχ beacharacterofGal(Q /Q(µ ))ofexact
n FT,n pn
≥
orderpn. Writeρ fortheinducedrepresentationofχ toGal(Q /Q)andσ for
n n FT,n n
therepresentationinducedtoGal(Q /Q)fromthetrivialoneoverQ(µ ). Then,
FT,n pn
thevaluesR(ρ )andR(σ )arep-adicallyintegralandsatisfy
n n
R(ρ ) R(σ ) <1
n n p
| − |
1 INTRODUCTION 3
ormoregenerally
R(ρ ψ) R(σ ψ) <1
n n p
| ⊗ − ⊗ |
whereψisafiniteordercharacterofGal(Qcyc/Q)and normalizedas p =p−1.
p p
|·| | |
Letuscommentalittlebitmoreonthisconjectureanditsconnectiontononcom-
mutative Iwasawa theory. The definition of the quantity R(ρ) describes the interpo-
lation propertiesthat the conjectural, as in [5], non-abelianp-adic L-functionshould
satisfy. Indeedthe authorsin [5] haveconjecturedthe existenceof an elementin the
K oftheIwasawaalgebraassociatedtothisextensionthatinterpolatessuitablymod-
1
ified, as above, values of L(E,ρ,1) and plays the role of the non-abelian p-adic L
function in their theory. Note that the representationsρ and σ are defined over Q
n n
andarecongruentmodulopthatisifweconsidertheirreductionmodulopthentheir
semi-simplificationsareisomorphic. Hencetheexistenceofthenon-abelianp-adicL
functionwouldimplythatitsvaluesshouldbealsop-adicallyclose.
There is almost nothing known concerning the construction of this object for a
generalp-adicLieextension.Howeverinthesettingthatweareinterestedin,thefalse
Tatecurveextension,Katoin[18]hasrelatedtheexistenceofthisnon-abelianobject
withcongruencesbetweenclassicalabelianp-adicLfunctionsovervariousfieldsofthe
extension.Wetakesometimetoexplainthisasitwillhelpusmotivatetheresultsthat
appearin thispaper. LetGbetheGaloisgroupofthefalse Tatecurveextensionand
Λ(G) = Z [[G]]theIwasawaalgebraofG. WesetU(n) := ker(Z× (Z/pnZ)×).
p p →
ThemainresultofKatoin[18]istheconstructionofaninjectivehomomorphism
θ :K (Λ(G)) Z [[U(n)]]×
G 1 p
→
n≥0
Y
and the explicit description of the image. In order to make this last statement a lit-
tle bit more precise we write, for n m 0, N : Z [[U(m)]] Z [[U(n)]]
m,n p p
≥ ≥ →
forthe canonicalnormmap, φ be the ring homomorphismZ [[Z×]] Z [[Z×]] in-
p p → p p
duced by the rising to the power p map on Z×. Then the result of Kato says that
p
θ (K (Λ(G)))=(a ) with
G 1 n n≥0
N (c )pi 1 mod p2n
i,n i
≡
0<i≤n
Y
withc =b φ(b )−1andb =a N (a )−1. Theelementsa haveanarithmetic
n n n−1 n n 0,n 0 n
meaning, they are abelian p-adic L functions. More precisely if we write ρ for the
n
Artin representation of G induced from a character of pn order of the Galois group
Gal(Q(µpn, p√n m)/Q(µpn)),thentheelementsanaretheabelianp-adicL-functions
interpolatingthevaluesL(E ρ χ,1),forχDirichletcharactersofthecyclotomic
n
⊗ ⊗
extensionofQ.
Theconjecturalcongruencesthatwehavewrittenabovecorrespondtothecaseof
n = 1 of Kato’s congruences after evaluating the abelian p-adic L functions at the
characterψ. Thereiscomputationalsupportfortheseconjectures;initiallybyBalister
[1] and much more vastly by the Dokchitser brothers [11]. In the first part of this
work[3]wehaveshowedtheexistenceoftheabelianp-adicL-functionsa appeared
n
in Katos’s congruencesand provedthe aboveconjecturalcongruencesup to an issue
1 INTRODUCTION 4
of periods. Namely there we have used notthe motivic periodsthatare stated in the
congruencesbut automorphicperiods, the so called Eichler-Shimura-Harderperiods,
thatappearquitenaturalinthesocalledmodularsymbolconstruction.Therewecame
acrossto a ratherdeepproblem, namelythe relationof these automorphicperiodsas
one use the functorialpropertiesof the L-functionsand especially base-change. We
say a little bit more on this at the last section of this paper. Finally we note that in
[7] an inductiveargumentwas used to showhow these congruences(for n = 1)can
providecongruencesforn > 1intheformconjecturedbyKatobutunfortunatelynot
modulotherightppower.
Ouraiminthispaperistotackletheconjecturalcongruencesinsistingongetting
therightmotivicperiods.Weachievethatforthecasewherep=3butwealsodiscuss
possibleextensionsforthecaseofp > 3. Weneedtoimposesomefurtherconditions
onE,otheroftechnicalnaturewhichwebelievecanberemovedandotherthatseem
important. Namely fromnow on we assume that (a) The curveE is semi-stable and
if we consider the minimaldiscriminant∆E = q|NEqiq then p does not divide iq
for all q. Note that the last condition means that the conductor of E is equal to the
Q
Artin conductor of the mod p representation obtained by E. (b) We assume that m
thatappearinthefalseTateextensionispowerfreewith(m,N ) = (m,p) = 1and,
E
(c)a ratherimportantassumption,thatE hasno rationalsubgroupoforderp, thatis
theassociatedmoduloprepresentationisirreducible. Finallywementionherethatas
ouraimhereistoaddresstheissueofmotivicversusautomorphicperiodswefocuson
provingtheaboveconjecturesforψ = 1. Howeverwelayallimportantconstructions
sothateverythingcanbeextendtothecaseψbeingnottrivial.
Our proof can be divided into two parts. Let us write f S (Γ (N );Q) for
2 0 E
∈
therationalnewformthatwecanassociatetoE. Inthefirstpartwerelyonthework
of Hida of the construction of a p-adic Rankin-Selberg product initiated in [13] and
generalizedin [14]. We can associate a newformg of weightone to the Artin repre-
sentationρandanEisensteinseries ofweightonewithσ. Usingthem,weconstruct
E
p-adic measuresdµ and dµ over Z× that are congruentmodulop, in the sense
f,g f,E p
thattheirvaluesateveryfinitecharacterofZ×arecongruent.Thesemeasuresinterpo-
p
late,p-adically,twistsofthecriticalvaluesoftheRankin-SelbergproductsD(f,g,s)
andD(f, ,s)byfiniteordercharacters.Evaluatingthesemeasuresatthetrivialchar-
E
acterwegetafirstformofcongruencesbetweenD(f,g,1)andD(f, ,1). Underthe
E
semi-stable assumptionwe can easily relate the Rankin-Selbergproductto the twists
oftheellipticcurveE.
Howeverwedonotyetgetthecongruencesstatedinthetheoremabove. Weneed
to work further two things. First, in order to establish the congruencesbetween the
measuresabove,wehadtoclearadenominatorc(f,m)thatdependssolelyonf and
m. Hence we getcongruencesafter multiplyingwith this constantc(f,m). Second,
theperiodsthatweusetogettherationalityoftheRankin-Selbergproductareclosely
related to the Petersson inner product< f,f >. These periodsmay not be equalto
ourperiodsΩ (E) and Ω (E) up to a p-adicunit. These two problemsare related.
+ −
Thatis,thereasonthatthedenominatorc(f,m)appearsinourp-adicinterpolationis
thefactthatthePeterssoninnerproductisnottheproperautomorphicperiodinorder
togetp-adicallyintegralratiosoftheform L−values .
aut.periods
In the second part we show, under the assumptions of the theorem, that indeed
2 BASICNOTATIONS 5
this is the case. This part relies heavily on the work of Wiles. We make use of two
of his importantresults in [28]. The first one is an extension of a theorem of Mazur
[24] onthe freeness, overa completedHecke algebra, of the first cohomologygroup
ofmodularcurvesafterlocalizingitata propermaximalideal. Thesecondoneisan
extension of a theorem of Ihara on the study of maps between Jacobiansof modular
curvesofdifferentlevels. Herewewouldliketomentionhowhelpfulwasforusthe
paperofDarmon,DiamondandTaylor[6]reviewingtheworkofWiles.
Letusjustmentionthatwetriedtoapplythesameideasforp > 3. Hereinorder
to bring things to the previous setting we use the fact that the base-change property
forautomorphicrepresentationsofGL(2)hasbeenprovedforcyclicextensions[23].
Using this, we can work the congruences over the totaly real field F := Q(µ )+.
p
Howeverwefacetwoproblems. Firstthefactthatweworkwithaprimethatramifies
inF putsrestrictionsonthefreenessresultsthatweneed.Secondweneedtorelateour
definedautomorhicperiodsoverF with the onesoverQ, and evenstrongerwe need
therelationtobeuptop-adicunitsaproblemmuchofthesamenaturethatwefacein
ourwork[3]. Wedonothaveananswertothesequestionsyet.
Acknowledgements: TheauthorwouldliketothankProfessorJohnCoatesforsug-
gestingto work on Kato’scongruencesandfor recommendingto considerthe use of
theRankin-Selbergmethodanditsp-adicversion.
2 Basic Notations
LetHbethecomplexupperhalfplane. IfwedenotebyGL+(R)thetwobytworeal
2
matriceswithpositivedeterminant,thenweconsidertheactionofthemonHbyliner
a c
fractionaltransformations,z α(z)= az+b,forα= GL+(R). Welet
7→ cz+d b d ∈ 2
(cid:18) (cid:19)
k 1beanintegerandwedefineanactionofGL+(R)onfunctionsf :H Cby
≥ 2 →
f (f [α])(z)=det(α)k/2(cz+d)−kf(α(z))
k
7→ |
a c
for α = GL+(R). We denote by SL (Z) the two by two matrices
b d ∈ 2 2
(cid:18) (cid:19)
withdeterminant1andintegralentries. ForapositiveintegerN wehavethestandard
notationsforthesubgroupsofSL (Z),
2
1 0
Γ(N)= γ SL (Z) γ mod N
{ ∈ 2 | ≡ 0 1 }
(cid:18) (cid:19)
Γ0(N)={γ ∈SL2(Z) | γ ≡ ∗0 ∗ mod N}
(cid:18) ∗ (cid:19)
1
Γ1(N)={γ ∈Γ0(N) | γ ≡ 0 1∗ mod N}
(cid:18) (cid:19)
We write M (Γ (N)) (resp. S (Γ (N))) for the space of modular forms (resp.
k 1 k 1
cuspforms)ofweightkwithrespecttoΓ (N).WewriteM (Γ (N),χ)(respS (Γ (N),χ)
1 k 0 k 0
formodularforms(resp. cuspforms)withrespecttoΓ (N)andNebentypeχ.
0
3 P-ADICMODULARFORMSANDMEASURES 6
Letusconsideracuspformf S (Γ (N),χ)andamodularformg M (Γ (N),ψ),
k 0 l 0
∈ ∈
forsomeintegerskandlwherewemoreoverassumek >l. LetuswritetheirFourier
expansionsat cuspasf(z) = ∞ a(n,f)qn andg(z) = ∞ a(n,g)qn with
∞ n=1 n=0
q = e2πız. We alsodefinefρ(z) = ∞ a(n,f)qn S (Γ (N),χ¯). We consider
the quantities L(f,g,s) := ∞Pa(n,nf=)1a(n,g)n−s∈andkthei0rPRankin-Selbergcon-
n=1 P
volution, D(f,g,s) := L (χψ,2s+2 k l)L(f,g,s) where we have removed
N
P − −
theEulerfactorsatN fromL(χψ,s). Ifweassumethatf andg areactuallynormal-
izedeigenformsandifwewritetheirLfunctionsL(f,s)= (1 α(q,f)q−s)(1
q{ − −
β(q,f)q−s) −1andL(g,s)= (1 α(q,g)q−s)(1 β(q,g)q−s) −1thenwehave
} q{ − − Q }
that
Q
D(f,g,s)= (1 α(q,f)α(q,g)q−s)(1 α(q,f)β(q,g)q−s)
{ − − ×
q
Y
(1 β(q,f)α(q,g)q−s)(1 β(q,f)β(q,g)q−s) −1
− − }
3 p-adic modular forms and measures
Inthissectionweintroducetheneededbackgroundinordertoobtainthep-adicversion
of the Rankin-Selbergconvolution. For all this backgroundwe follow Hida’s papers
[13,14].WeletpbeaprimenumberandwefixanembeddingQ֒ Q ֒ C ,where
→ p → p
C isthep-adiccompletionofQ underthenormalizedp-adicabsolutevalue with
p p |·|p
p =p−1. ForanysubringR QweconsidertheR-modules,
p
| | ⊆
M (Γ (N),ψ;R):= f M (Γ (N),ψ) f(z)= a(n,f)qn, a(n,f) R
k 0 k 0
{ ∈ | ∈ }
n≥0
X
M (Γ (N);R):= f M (Γ (N)) f(z)= a(n,f)qn, a(n,f) R
k 1 k 1
{ ∈ | ∈ }
n≥0
X
MoreoverwedefineS (Γ (N),ψ;R)=S (Γ (N),ψ) M (Γ (N),ψ;R)andsim-
k 0 k 0 k 0
∩
ilar for S (Γ (N);R). For a modular form f M (Γ (N);Q) it is known that
k 1 k 1
∈
one can define the p-adic norm of f, f := sup a(n,f) . Let now K be
p n≥0 p 0
| | | |
any finite extension of Q and write K for the closure of K in C . We define the
0 p
space M (Γ (N),ψ;K) (resp. M (Γ (N);K)) to be the p-adic completion of the
k 0 k 1
space M (Γ (N),ψ;K ) (resp. M (Γ (N);K ) with respect to the norm in-
k 0 0 k 1 0 p
|·|
side K[[q]] where we consider q as indeterminant. Then it is known by the work
of Deligneand Rapoport[8] that, M (Γ (N),ψ;K) = M (Γ (N),ψ;K ) K,
k 0 k 0 0 ⊗K0
M (Γ (N);K) = M (Γ (N);K ) K. Moreoveritisknownthatthedefinition
k 1 k 1 0 ⊗K0
of M (Γ (N);K) and M (Γ (N),ψ;K) is independent of the choice of the dense
k 1 k 0
subfieldK . Letusnowwrite forthep-adicringofintegersofK.Thenwedefine
0 K
O
thep-adicintegralmodularformsas,
M (Γ (N),ψ; ):= f M (Γ (N),ψ;K) f 1 =M (Γ (N),ψ;K) [[q]],
k 0 K k 0 p k 0 K
O { ∈ || | ≤ } ∩O
M (Γ (N); ):= f M (Γ (N);K) f 1 =M (Γ (N);K) [[q]]
k 1 K k 1 p k 1 K
O { ∈ || | ≤ } ∩O
3 P-ADICMODULARFORMSANDMEASURES 7
Definition1 (p-adic modular forms). Let A be either K or . We consider the
K
O
spaces,
M (N;A):= ∞ M (Γ (Npn);A) and M (N,ψ;A):= ∞ M (Γ (Npn),ψ;A)
k ∪n=0 k 1 k ∪n=0 k 0
Then we define the space of p-adic modular forms of Γ (N), resp. of Γ (N) and
1 0
characterψ,asthecompletionoftheabovespaceswithrespecttothenorm . We
p
|·|
denotethembyM (N;A),resp. M (N,ψ;A).
k k
We notethatalltheabovediscussioncanbedoneconsideringcuspformsinstead
ofmodularforms. Inparticularwecanconsideralsop-adiccuspformswhichwewill
denotebyS (N,A)andS (N,ψ;A).
k k
Remark1 For ourlater use, we mention thatthe space M (N,A) is actuallyinde-
k
pendentofkfork 2,sowemayalsowritejustM(N;A),see[14].
≥
Nowwearegoingtodefinep-adicHeckeoperatorthatextendtheusualoneswhen
restricted to the space of classical modularforms. For any integer n prime to N we
n−1 o
consideramatrixσ Γ (N),suchthatσ mod N. Itfollowsby
n ∈ 0 n ≡ 0 n
(cid:18) (cid:19)
theworkofDeligneandRapoport[8]thattheactionf f σ onM (Γ (N);K)is
k n k 1
7→ |
integral,thatisitpreservestheintegralspaceM (Γ (N); ). We“define”theHecke
k 1 K
O
operatorsT(ℓ) and S(ℓ), for every prime ℓ, acting on M (Γ (N);K) by describing
k 1
theiractionontheq-expansion,
a(ℓn,f)+ℓk−1a(n,f σ ), ifℓisprimetoN;
a(n,T(ℓ)f)= ℓ |k ℓ
a(ℓn,f), otherwise.
(cid:26)
ℓk−2a(n,f σ ), ifℓisprimetoN;
a(n,S(ℓ)(f))= |k ℓ
0, otherwise.
(cid:26)
Notethatthesedefinitionsareconsistentwiththeonesontheclassicalellipticmodular
forms.WedefinetheHeckealgebraH (Γ (N),ψ;A),resp.H (Γ (N);A)),forAei-
k 0 k 1
therKor astheA-subalgebraofEnd (M (Γ (N),ψ;A)),resp.End (M (Γ (N);A)),
K A k 0 A k 1
O
generatedbyT(ℓ)andS(ℓ)forallprimesℓ. Similarlywedefineh (Γ (N);ψ;A)and
k 0
h (Γ (N);A)whenwerestricttheactiontothespaceofcuspforms.Actuallyonehas
k 1
that H (Γ (N),ψ;A) = H (Γ (N),ψ;Z) A and similarly for the other spaces.
k 0 k 0 Z
⊗
FinallywenotethatwhenpN theactionoftheHeckeoperatorsisp-adicallyintegral
|
i.e. Tf f foreveryT H (Γ (N); ).
p p k 1 K
| | ≤| | ∈ O
Wenowdefinep-adicHeckealgebras. Noticethatwehavethe -surjectiveho-
K
O
momorphismsinducedbyrestrictionoftheHeckeoperators,
H (Γ (Npm),ψ; ) H (Γ (Npn),ψ; ) for m n 1
k 0 K k 0 K
O → O ≥ ≥
H (Γ (Npm); ) H (Γ (Npn); ) for m n 1
k 1 K k 1 K
O → O ≥ ≥
Definition2 Wedefinethespaceofp-adicHeckealgebrasH (N,ψ; )(resp.H (N; ))
k K k K
O O
by the projective limit, lim H (Γ (N),ψ; )(resp. lim H (Γ (N); )). Simi-
n k 0 K n k 1 K
O O
larlywedefinethespac←es−h (N,ψ; )andh (N; ←)−.
k K k K
O O
3 P-ADICMODULARFORMSANDMEASURES 8
By definitionthisoperatorsacton the spacesM (N;A) andM (N,ψ;A) for A
k k
equaltoKor .Howeverthefacttheyarep-adicallyintegralallowustoextendtheir
K
O
actionto the space of p-adicmodularformsM (N;A) and M (N,ψ;A). Ournext
k k
stepistodefineHida’sordinaryidempotenteattachedtotheHeckeoperatorT(p).We
startwithagenerallemma,
Lemma1 For any commutative -algebra R of finite rank over and for any
K K
O O
x Rthelimitlim xn! existsandgivesanidempotentofR.
n→∞
∈
Proof See[16](p.201) .
Definition3 Wedefineanidempotente inH (Γ (Npn,ψ; )andinH (Γ (Npn; )
n k 0 K k 1 K
O O
bythelimite =lim T(p)m!. MoreoverwedefineanidempotentinH (N; )
n m→∞ k K
O
andinH (N,ψ; )bytakingtheprojectivelimite=lim e .
k K n n
O
←−
WewillbeinterestedinthespaceeM (N,ψ; ),usuallycalledtheordinarypart
k K
◦ O
ofM (N,ψ; )anddenotedbyM (N,ψ; ).Actuallythisspaceisnotthatlarge
k OK k OK
asthefollowinglemmaindicates,
Lemma2 (Hida)Let C(ψ) be theconductorofthe characterψ. Definepositive in-
tegers N′ and C(ψ)′ by writing N = N′pr and C(ψ) = C(ψ)′pt with (N′,p) =
(C(ψ)′,p)=1. Lets:=max(t,1). Then,
eM (N,ψ; ) M (Γ (N′ps),ψ; )
k K k 0 K
O ⊂ O
Proof: See[13].
Definition4 Wesaythatanormalizedeigenformf S (Γ (N )ψ)isan(p-)ordi-
0 k 0 0
∈
naryformif,
1. ThelevelN oftheformf isdivisiblebyp.
0
2. TheFouriercoefficienta(p,f )isap-adicunit.
0
Thefollowinglemmaisprovedin[13](p.168),
Lemma3 Letf S (Γ (N),ψ)beanewformwithk 2and a(p,f) =1. Then,
k 0 p
∈ ≥ | |
there is a uniqueordinary form f of weightk andcharacterψ such thata(n,f) =
0
a(n,f )forallnnotdivisiblebyp. Moreover,f isgivenby,
0 0
f(z), ifpdividesN;
f (z)=
0 f(z) wf(pz), otherwise.
(cid:26) −
wherewistheuniquerootofX2 a(p,f)X+ψ(p)pk−1 =0with w <1.Moreover
p
− | |
inthesecondcasei.e.(p,N)=1wehavethatN =Npandthata(p,f )=uwhere
0 0
uisthep-adicunitrootoftheaboveequation.
3 P-ADICMODULARFORMSANDMEASURES 9
LetusnowconsiderasurjectiveK-linearhomomorphismΦ:h (Γ (N ),ψ;K)
k 0 0
→
K thatisinducedbyanordinaryformf bysendingT(n) a(n,f ). Letusmore-
0 0
7→
overassumethatthismapissplit(wewillshowlaterthatinthecaseofinterestthiswill
betrue)andinducesanalgebradirectdecomposition,h (Γ (N ),ψ;K)=K Afor
k 0 0 ∼ ×
some summandA and let us denote by 1 the idempotentcorrespondingto the first
f0
summandisomorphictoK.Wenowconsiderthelinearformℓ :S (N ,ψ;K) K
f0 k 0 →
definedby,ℓ (g) := a(1,1 e g). Notethat,bylemma2,thelinearformiswellde-
f0 f0
fined.
Proposition1 (Hida’slinear operator)Assume thatK containsall the Fourier co-
0
efficients of the ordinary form f . Then, the linear form ℓ has values in K on
0 f0 0
S (Γ (N pn),ψ;K ) forevery n 0. Furthermore, for g S (Γ (N pn),ψ;K )
k 0 0 0 k 0 0 0
≥ ∈
wehave
<h ,g >
ℓ (g)=a(p,f )−npn(k/2) n N0pn
f0 0 <h,f >
0 N0
0 1
whereh=f0ρ|k N0 −0 ,hn(z)=h(pnz).
(cid:18) (cid:19)
Proof See[13]p.175.
Wenotethatifweconsideraconstantc(f ) suchthatc(f )1 h (Γ (N ); )
0 ∈OK 0 f0 ∈ k 1 0 OK
thenwehaveanintegralvaluedlinearformc(f )ℓ : S (N ,ψ; ) asthe
0 f0 k 0 OK → OK
Heckeoperatorsarep-adicallyintegral
p-adicmodularformsvaluedmeasures: Nowwe aregoingto definep-adicmea-
suresassociatedwithp-adicmodularformsM(N; )forsomeN relativeprimeto
K
O
p. Notethatitfollowsfromremark1thatwedonotneedtospecifytheweight.
We let X to be a p-adic space that consists of some copies of Z and of a finite
p
productoffinite groups. For ourapplicationslater X isgoingto be justZ× = (1+
p ∼
pZ ) (Z/pZ)×. Let us write C(X; ) for the space of continuous functions of
p K
× O
X withvaluesin andLC(X; )forthespaceoflocallyconstantfunctionson
K K
O O
X. A measure µ on X with values in the space M(N; ) is just an -linear
K K
O O
homomorphismfromC(X; )toM(N; ).
K K
O O
LetusconsiderthespaceZ :=Z× (Z/NZ)×andforanelementz Z letus
N p × ∈ N
writez fortheprojectionofz tothefirstcomponent. WecandefineanactionofZ
p N
onthespaceM (Γ (Npr); )byf f z := zkf σ with σ asdefinedabove.
k 1 OK 7→ | p |k z z
ThisactioncanbeextendedtoM(N, )(see[14]p. 10).
K
O
Definition5 (see[14])We saythatap-adicmeasureµ : C(X;O ) M(N;O )
K K
→
isarithmeticifthefollowingthreeconditionsaresatisfied,
1. Thereexistspositiveintegerksuchthatforeveryφ LC(X; ),
K
∈ O
µ(φ) M (Np∞; )
k K
∈ O
Wewillcallktheweightofµ.
3 P-ADICMODULARFORMSANDMEASURES 10
2. There are continuous action Z X X and a finite order character ξ :
N
Z × such that µ(φ)z = z×kξ(z)→µ(φ(z x)) for every φ C(X;O ),
N → OK | p · ∈ K
wherektheweightofµ. Wethensaythatthearithmeticmeasureisofcharacter
ξ.
WesaythatthemeasureiscuspidalifµactuallytakesvaluesinS(N; ).
K
O
Weareinterestedinattachingarithmeticmeasurestoagivenmodularform.Given
a modularformf M (Γ (N),χ; ) with q-expansionf(z) = a(n,f)qn
∈ k 0 OK n≥0
wecanassociateameasuredµ onX :=Z× by,
f p P
dµ (φ) φ(n)a(n,f)qn, φ C(X; )
f K
7→ ∈ O
n≥1
X
wherewedefinetheactionofZ onZ×byz x z2x.Fromthefollowinglemmadue
N p · 7→ p
toShimuraweconcludethatdµ isanarithmeticmeasureofweightk andcharacter
f
χ.
Lemma4 Letg = ∞ b(n,g)qn M (Γ (N),ω)andφanarbitraryfunctionon
n=0 ∈ k 0
a b
Ym =Z/NpmZ.DefiPneg(φ):= ∞n=0φ(n)b(n,g)qn.Thenforanyγ = c d ∈
(cid:18) (cid:19)
Γ0(N2p2m),wehavethefollowiPngtransformationformula,
g(φ) γ =ω(d)g(φ )
k a
|
whereφ (y)=φ(a−2y)forally Y =Z/NpmZ.
a m
∈
Proof See[13](p. 190)
ByaresultofHidain[14](p. 24corollary2.3)itfollowsthatactuallythemeasure
µ ,onZ×,iscuspidal.
f p
Eisenstein measure and convolution: Of particular importance for us is the exis-
tence, which follows from [21], of the following arithmetic measure of weight one,
dE :C(Z ; ) S¯(L; )definedby,
L K K
O → O
∞
2 φ(z)dE = sgn(d)φ(d)qn K[[q]]
∈O
ZZL (nXn,p=)1=1(dX,dL|n)=1
WecallthistheEisenstein-Katzmeasure. Forageneralarithmeticmeasureµ ofZ×
g p
associatedtoamodularformofweightℓandcharacterψwecandefineaconvolution
operation,see forexample[13, 26], ofµ and dE. We considerthe action ofZ on
g L
C(Z×; )by(z⋆φ)(x) := ψ(z)zℓφ(z2x)forz Z andφ C(Z×; ). Fora
p OK p p ∈ L ∈ p OK
givenintegerk ℓandafiniteordercharacterχ:Z C× wedefinethearithmetic
L
≥ →
measure(µ dE) :C(Z×; ) S(L; )as
g ∗ χ,k p OK → OK
φ(x)(µL dE) := χ(z)zk−1(z−1⋆φ)(x)dE(z)dµL(x)
ZZ×p g ∗ χ,k ZZ×p ZZL p g