ebook img

Special values of L-functions and false Tate curve extensions II PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Special values of L-functions and false Tate curve extensions II

Special values of L-functions and false Tate curve 8 extensions II 0 0 2 ThanasisBouganis n a February 3,2008 J 5 2 Abstract ] Inthispaperweshowhowonecancombinethep-adicRankin-Selbergproduct T constructionofHidawithfreenessresultsofHeckemodulesofWilestoestablish N interestingcongruencesbetweenspecialvaluesofL-functions.Thesecongruences . isapartofsomedeepconjecturalcongruencesthatfollowfromtheworkofKato h onthenon-commutativeIwasawatheoryofthefalseTatecurveextension. t a m 1 Introduction [ 1 LetEbeanellipticcurvedefinedoverQandparationalprime.Intheclassicalsetting v ofcyclotomicIwasawatheoryforellipticcurvesoneisconcernedwiththestudyofthe 9 twistsoftheellipticcurvebyfiniteordercharacterthatfactorthroughthecyclotomic 3 9 ZpextensionQcyc n≥0Q(µpn),whereµpn isthegroupofthepn-throotsofunity. ⊂∪ 3 TheaimofthetheoryistoobtainalinkbetweentheanalyticallydefinedLfunctions . attached to E, and its twists, and the arithmetic properties of the elliptic curve over 1 0 the cyclotomic tower. The cyclotomic Main Conjecture for elliptic curves gives to 8 thisconjecturallinkaverypreciseform. Wenotethatmuchhasalreadybeenproven 0 towardsthisMainConjecturebyKato[19],andSkinnerandUrbanhaveannounceda : v completeprooffor semi-stable E, subject to provingcertain results aboutthe Galois i representationsattachedtoautomorphicforms. X One of the key ingredients of the above Main Conjecture are the p-adic L func- r a tions. Theseareusuallyrealizedasp-adicmeasuresoverGaloisgroups,which,when evaluated at finite order characters, interpolate canonically modified values of the L function. Theirconstructionusuallyinvolvestwosteps. Thefirstoneistofindproper transcendentalnumbers,usuallycalledperiods,suchthattheratiooftheLvaluesover theseperiodsgivesanalgebraicnumber.Thesecondstepistoprovethatthesevalues, oraslightmodificationofthem,havethedesiredinterpolationandintegralityproper- ties. Lately there has been great interest in extending the classical Iwasawa theory to a non abelian setting, that is to replace the Z extension by more generalp-adic Lie p extensionswhoseGaloisgroupisnon-abelian. Infactin[5]apreciseanalogueofthe MainConjectureinthisnonabeliansettingforalargefamilyofp-adicLiegroupshas beenstated. 1 1 INTRODUCTION 2 Oneoftheextensionsthatisofparticularinterestisthesocalled“falseTatecurve” extensions. Thatisextensionsoftheform,QFT := n≥0Q(µpn, p√n m)forsomep- ∪ powerfreeintegerm > 1. NotethattheGaloisgroupisthesemi-directproductZ ⋉ p Z×.Thereisaconjecturaltheoryforp-adicLfunctionsthatshouldexistinthissetting. p InaworkwithV.Dokchitser[4]wehaveaddressedthefirstoftheabovementionedtwo steps,thatisalgebraicityofthecriticalvaluesoftheLfunctionsinvolved. Inordertomakethingsmoreexplicitletusfixsomemorenotation.WewriteEfor anellipticcurvedefinedoverQandN foritsconductor.Aswealreadymentionedwe E considertheextensionsQFT,n := Q(µpn, p√n m)andQFT = n≥0QFT,n. Wewrite ∪ ρ foranArtin representationthatfactorsthroughQ andN foritsconductor. Let FT ρ usalsowriteL(E,ρ,s)fortheLfunctionattachedtoEtwistedbyρ. Weconsiderthe valueofL(E,ρ,s)atthecriticalpoints=1. ThefactthattheArtinrepresentationsρ factorthroughthefalseTatecurveallowedustoestablishtheanalyticityofL(E,ρ,s) ats = 1andthenourmainresultin[4]isconcernedwiththealgebraicpropertiesof thesevalues. LetuswriteΩ (E)fortheNe´ronperiodsattachedtotheellipticcurve ± E. Thenwehaveshownthat L(E,ρ,1) Q. Ω (E)dim(ρ+)Ω (E)dim(ρ−) ∈ + − forallArtinrepresentationsρthatfactorthroughQ . Actuallywedidmore.Namely, FT involvingalsotheperiodthatshouldcorrespondtothe“Artinmotive”M(ρ)attached toρweestablishedtheperiodconjectureofDelignethatgivesaprecisedescriptionof thenumberfieldwherethisvaluelies. Let us now move to the second step that we mentioned above, that is the p-adic properties of these values. From now on we will assume that the elliptic curve has good ordinary reduction at p. We start by stating a conjectural congruence between theseLvaluesfordifferentArtinrepresentations.WedefinethequantityR(ρ)as P (ρˆ,u−1) L (E,ρ,1) R(ρ):=e (ρ)u−vp(Nρ) p {p,q|m} p P (ρ,w−1) · Ω (E)dim(ρ+)Ω (E)dim(ρ−) p + − where e (ρ) is a local epsilon factor of ρ suitably normalized, P (ρ,X) is the usual p p characteristicpolynomialassociatedtoρatpandu,warep-adicnumbersdefinedby, 1 a X +pX2 =(1 uX)(1 wX), u Z× and p+1 a =#E (F ) − p − − ∈ p − p p p HereρˆisthedualrepresentationbutinourfalseTatecurvesettingitiseasytoseethat ρˆ=ρ. Finallythesubscript p,q m meansthatwehaveremovedtheEulerfactorsat ∼ { | } theseprimes. Thenwestate, Conjecture: Foreachn 1,letχ beacharacterofGal(Q /Q(µ ))ofexact n FT,n pn ≥ orderpn. Writeρ fortheinducedrepresentationofχ toGal(Q /Q)andσ for n n FT,n n therepresentationinducedtoGal(Q /Q)fromthetrivialoneoverQ(µ ). Then, FT,n pn thevaluesR(ρ )andR(σ )arep-adicallyintegralandsatisfy n n R(ρ ) R(σ ) <1 n n p | − | 1 INTRODUCTION 3 ormoregenerally R(ρ ψ) R(σ ψ) <1 n n p | ⊗ − ⊗ | whereψisafiniteordercharacterofGal(Qcyc/Q)and normalizedas p =p−1. p p |·| | | Letuscommentalittlebitmoreonthisconjectureanditsconnectiontononcom- mutative Iwasawa theory. The definition of the quantity R(ρ) describes the interpo- lation propertiesthat the conjectural, as in [5], non-abelianp-adic L-functionshould satisfy. Indeedthe authorsin [5] haveconjecturedthe existenceof an elementin the K oftheIwasawaalgebraassociatedtothisextensionthatinterpolatessuitablymod- 1 ified, as above, values of L(E,ρ,1) and plays the role of the non-abelian p-adic L function in their theory. Note that the representationsρ and σ are defined over Q n n andarecongruentmodulopthatisifweconsidertheirreductionmodulopthentheir semi-simplificationsareisomorphic. Hencetheexistenceofthenon-abelianp-adicL functionwouldimplythatitsvaluesshouldbealsop-adicallyclose. There is almost nothing known concerning the construction of this object for a generalp-adicLieextension.Howeverinthesettingthatweareinterestedin,thefalse Tatecurveextension,Katoin[18]hasrelatedtheexistenceofthisnon-abelianobject withcongruencesbetweenclassicalabelianp-adicLfunctionsovervariousfieldsofthe extension.Wetakesometimetoexplainthisasitwillhelpusmotivatetheresultsthat appearin thispaper. LetGbetheGaloisgroupofthefalse Tatecurveextensionand Λ(G) = Z [[G]]theIwasawaalgebraofG. WesetU(n) := ker(Z× (Z/pnZ)×). p p → ThemainresultofKatoin[18]istheconstructionofaninjectivehomomorphism θ :K (Λ(G)) Z [[U(n)]]× G 1 p → n≥0 Y and the explicit description of the image. In order to make this last statement a lit- tle bit more precise we write, for n m 0, N : Z [[U(m)]] Z [[U(n)]] m,n p p ≥ ≥ → forthe canonicalnormmap, φ be the ring homomorphismZ [[Z×]] Z [[Z×]] in- p p → p p duced by the rising to the power p map on Z×. Then the result of Kato says that p θ (K (Λ(G)))=(a ) with G 1 n n≥0 N (c )pi 1 mod p2n i,n i ≡ 0<i≤n Y withc =b φ(b )−1andb =a N (a )−1. Theelementsa haveanarithmetic n n n−1 n n 0,n 0 n meaning, they are abelian p-adic L functions. More precisely if we write ρ for the n Artin representation of G induced from a character of pn order of the Galois group Gal(Q(µpn, p√n m)/Q(µpn)),thentheelementsanaretheabelianp-adicL-functions interpolatingthevaluesL(E ρ χ,1),forχDirichletcharactersofthecyclotomic n ⊗ ⊗ extensionofQ. Theconjecturalcongruencesthatwehavewrittenabovecorrespondtothecaseof n = 1 of Kato’s congruences after evaluating the abelian p-adic L functions at the characterψ. Thereiscomputationalsupportfortheseconjectures;initiallybyBalister [1] and much more vastly by the Dokchitser brothers [11]. In the first part of this work[3]wehaveshowedtheexistenceoftheabelianp-adicL-functionsa appeared n in Katos’s congruencesand provedthe aboveconjecturalcongruencesup to an issue 1 INTRODUCTION 4 of periods. Namely there we have used notthe motivic periodsthatare stated in the congruencesbut automorphicperiods, the so called Eichler-Shimura-Harderperiods, thatappearquitenaturalinthesocalledmodularsymbolconstruction.Therewecame acrossto a ratherdeepproblem, namelythe relationof these automorphicperiodsas one use the functorialpropertiesof the L-functionsand especially base-change. We say a little bit more on this at the last section of this paper. Finally we note that in [7] an inductiveargumentwas used to showhow these congruences(for n = 1)can providecongruencesforn > 1intheformconjecturedbyKatobutunfortunatelynot modulotherightppower. Ouraiminthispaperistotackletheconjecturalcongruencesinsistingongetting therightmotivicperiods.Weachievethatforthecasewherep=3butwealsodiscuss possibleextensionsforthecaseofp > 3. Weneedtoimposesomefurtherconditions onE,otheroftechnicalnaturewhichwebelievecanberemovedandotherthatseem important. Namely fromnow on we assume that (a) The curveE is semi-stable and if we consider the minimaldiscriminant∆E = q|NEqiq then p does not divide iq for all q. Note that the last condition means that the conductor of E is equal to the Q Artin conductor of the mod p representation obtained by E. (b) We assume that m thatappearinthefalseTateextensionispowerfreewith(m,N ) = (m,p) = 1and, E (c)a ratherimportantassumption,thatE hasno rationalsubgroupoforderp, thatis theassociatedmoduloprepresentationisirreducible. Finallywementionherethatas ouraimhereistoaddresstheissueofmotivicversusautomorphicperiodswefocuson provingtheaboveconjecturesforψ = 1. Howeverwelayallimportantconstructions sothateverythingcanbeextendtothecaseψbeingnottrivial. Our proof can be divided into two parts. Let us write f S (Γ (N );Q) for 2 0 E ∈ therationalnewformthatwecanassociatetoE. Inthefirstpartwerelyonthework of Hida of the construction of a p-adic Rankin-Selberg product initiated in [13] and generalizedin [14]. We can associate a newformg of weightone to the Artin repre- sentationρandanEisensteinseries ofweightonewithσ. Usingthem,weconstruct E p-adic measuresdµ and dµ over Z× that are congruentmodulop, in the sense f,g f,E p thattheirvaluesateveryfinitecharacterofZ×arecongruent.Thesemeasuresinterpo- p late,p-adically,twistsofthecriticalvaluesoftheRankin-SelbergproductsD(f,g,s) andD(f, ,s)byfiniteordercharacters.Evaluatingthesemeasuresatthetrivialchar- E acterwegetafirstformofcongruencesbetweenD(f,g,1)andD(f, ,1). Underthe E semi-stable assumptionwe can easily relate the Rankin-Selbergproductto the twists oftheellipticcurveE. Howeverwedonotyetgetthecongruencesstatedinthetheoremabove. Weneed to work further two things. First, in order to establish the congruencesbetween the measuresabove,wehadtoclearadenominatorc(f,m)thatdependssolelyonf and m. Hence we getcongruencesafter multiplyingwith this constantc(f,m). Second, theperiodsthatweusetogettherationalityoftheRankin-Selbergproductareclosely related to the Petersson inner product< f,f >. These periodsmay not be equalto ourperiodsΩ (E) and Ω (E) up to a p-adicunit. These two problemsare related. + − Thatis,thereasonthatthedenominatorc(f,m)appearsinourp-adicinterpolationis thefactthatthePeterssoninnerproductisnottheproperautomorphicperiodinorder togetp-adicallyintegralratiosoftheform L−values . aut.periods In the second part we show, under the assumptions of the theorem, that indeed 2 BASICNOTATIONS 5 this is the case. This part relies heavily on the work of Wiles. We make use of two of his importantresults in [28]. The first one is an extension of a theorem of Mazur [24] onthe freeness, overa completedHecke algebra, of the first cohomologygroup ofmodularcurvesafterlocalizingitata propermaximalideal. Thesecondoneisan extension of a theorem of Ihara on the study of maps between Jacobiansof modular curvesofdifferentlevels. Herewewouldliketomentionhowhelpfulwasforusthe paperofDarmon,DiamondandTaylor[6]reviewingtheworkofWiles. Letusjustmentionthatwetriedtoapplythesameideasforp > 3. Hereinorder to bring things to the previous setting we use the fact that the base-change property forautomorphicrepresentationsofGL(2)hasbeenprovedforcyclicextensions[23]. Using this, we can work the congruences over the totaly real field F := Q(µ )+. p Howeverwefacetwoproblems. Firstthefactthatweworkwithaprimethatramifies inF putsrestrictionsonthefreenessresultsthatweneed.Secondweneedtorelateour definedautomorhicperiodsoverF with the onesoverQ, and evenstrongerwe need therelationtobeuptop-adicunitsaproblemmuchofthesamenaturethatwefacein ourwork[3]. Wedonothaveananswertothesequestionsyet. Acknowledgements: TheauthorwouldliketothankProfessorJohnCoatesforsug- gestingto work on Kato’scongruencesandfor recommendingto considerthe use of theRankin-Selbergmethodanditsp-adicversion. 2 Basic Notations LetHbethecomplexupperhalfplane. IfwedenotebyGL+(R)thetwobytworeal 2 matriceswithpositivedeterminant,thenweconsidertheactionofthemonHbyliner a c fractionaltransformations,z α(z)= az+b,forα= GL+(R). Welet 7→ cz+d b d ∈ 2 (cid:18) (cid:19) k 1beanintegerandwedefineanactionofGL+(R)onfunctionsf :H Cby ≥ 2 → f (f [α])(z)=det(α)k/2(cz+d)−kf(α(z)) k 7→ | a c for α = GL+(R). We denote by SL (Z) the two by two matrices b d ∈ 2 2 (cid:18) (cid:19) withdeterminant1andintegralentries. ForapositiveintegerN wehavethestandard notationsforthesubgroupsofSL (Z), 2 1 0 Γ(N)= γ SL (Z) γ mod N { ∈ 2 | ≡ 0 1 } (cid:18) (cid:19) Γ0(N)={γ ∈SL2(Z) | γ ≡ ∗0 ∗ mod N} (cid:18) ∗ (cid:19) 1 Γ1(N)={γ ∈Γ0(N) | γ ≡ 0 1∗ mod N} (cid:18) (cid:19) We write M (Γ (N)) (resp. S (Γ (N))) for the space of modular forms (resp. k 1 k 1 cuspforms)ofweightkwithrespecttoΓ (N).WewriteM (Γ (N),χ)(respS (Γ (N),χ) 1 k 0 k 0 formodularforms(resp. cuspforms)withrespecttoΓ (N)andNebentypeχ. 0 3 P-ADICMODULARFORMSANDMEASURES 6 Letusconsideracuspformf S (Γ (N),χ)andamodularformg M (Γ (N),ψ), k 0 l 0 ∈ ∈ forsomeintegerskandlwherewemoreoverassumek >l. LetuswritetheirFourier expansionsat cuspasf(z) = ∞ a(n,f)qn andg(z) = ∞ a(n,g)qn with ∞ n=1 n=0 q = e2πız. We alsodefinefρ(z) = ∞ a(n,f)qn S (Γ (N),χ¯). We consider the quantities L(f,g,s) := ∞Pa(n,nf=)1a(n,g)n−s∈andkthei0rPRankin-Selbergcon- n=1 P volution, D(f,g,s) := L (χψ,2s+2 k l)L(f,g,s) where we have removed N P − − theEulerfactorsatN fromL(χψ,s). Ifweassumethatf andg areactuallynormal- izedeigenformsandifwewritetheirLfunctionsL(f,s)= (1 α(q,f)q−s)(1 q{ − − β(q,f)q−s) −1andL(g,s)= (1 α(q,g)q−s)(1 β(q,g)q−s) −1thenwehave } q{ − − Q } that Q D(f,g,s)= (1 α(q,f)α(q,g)q−s)(1 α(q,f)β(q,g)q−s) { − − × q Y (1 β(q,f)α(q,g)q−s)(1 β(q,f)β(q,g)q−s) −1 − − } 3 p-adic modular forms and measures Inthissectionweintroducetheneededbackgroundinordertoobtainthep-adicversion of the Rankin-Selbergconvolution. For all this backgroundwe follow Hida’s papers [13,14].WeletpbeaprimenumberandwefixanembeddingQ֒ Q ֒ C ,where → p → p C isthep-adiccompletionofQ underthenormalizedp-adicabsolutevalue with p p |·|p p =p−1. ForanysubringR QweconsidertheR-modules, p | | ⊆ M (Γ (N),ψ;R):= f M (Γ (N),ψ) f(z)= a(n,f)qn, a(n,f) R k 0 k 0 { ∈ | ∈ } n≥0 X M (Γ (N);R):= f M (Γ (N)) f(z)= a(n,f)qn, a(n,f) R k 1 k 1 { ∈ | ∈ } n≥0 X MoreoverwedefineS (Γ (N),ψ;R)=S (Γ (N),ψ) M (Γ (N),ψ;R)andsim- k 0 k 0 k 0 ∩ ilar for S (Γ (N);R). For a modular form f M (Γ (N);Q) it is known that k 1 k 1 ∈ one can define the p-adic norm of f, f := sup a(n,f) . Let now K be p n≥0 p 0 | | | | any finite extension of Q and write K for the closure of K in C . We define the 0 p space M (Γ (N),ψ;K) (resp. M (Γ (N);K)) to be the p-adic completion of the k 0 k 1 space M (Γ (N),ψ;K ) (resp. M (Γ (N);K ) with respect to the norm in- k 0 0 k 1 0 p |·| side K[[q]] where we consider q as indeterminant. Then it is known by the work of Deligneand Rapoport[8] that, M (Γ (N),ψ;K) = M (Γ (N),ψ;K ) K, k 0 k 0 0 ⊗K0 M (Γ (N);K) = M (Γ (N);K ) K. Moreoveritisknownthatthedefinition k 1 k 1 0 ⊗K0 of M (Γ (N);K) and M (Γ (N),ψ;K) is independent of the choice of the dense k 1 k 0 subfieldK . Letusnowwrite forthep-adicringofintegersofK.Thenwedefine 0 K O thep-adicintegralmodularformsas, M (Γ (N),ψ; ):= f M (Γ (N),ψ;K) f 1 =M (Γ (N),ψ;K) [[q]], k 0 K k 0 p k 0 K O { ∈ || | ≤ } ∩O M (Γ (N); ):= f M (Γ (N);K) f 1 =M (Γ (N);K) [[q]] k 1 K k 1 p k 1 K O { ∈ || | ≤ } ∩O 3 P-ADICMODULARFORMSANDMEASURES 7 Definition1 (p-adic modular forms). Let A be either K or . We consider the K O spaces, M (N;A):= ∞ M (Γ (Npn);A) and M (N,ψ;A):= ∞ M (Γ (Npn),ψ;A) k ∪n=0 k 1 k ∪n=0 k 0 Then we define the space of p-adic modular forms of Γ (N), resp. of Γ (N) and 1 0 characterψ,asthecompletionoftheabovespaceswithrespecttothenorm . We p |·| denotethembyM (N;A),resp. M (N,ψ;A). k k We notethatalltheabovediscussioncanbedoneconsideringcuspformsinstead ofmodularforms. Inparticularwecanconsideralsop-adiccuspformswhichwewill denotebyS (N,A)andS (N,ψ;A). k k Remark1 For ourlater use, we mention thatthe space M (N,A) is actuallyinde- k pendentofkfork 2,sowemayalsowritejustM(N;A),see[14]. ≥ Nowwearegoingtodefinep-adicHeckeoperatorthatextendtheusualoneswhen restricted to the space of classical modularforms. For any integer n prime to N we n−1 o consideramatrixσ Γ (N),suchthatσ mod N. Itfollowsby n ∈ 0 n ≡ 0 n (cid:18) (cid:19) theworkofDeligneandRapoport[8]thattheactionf f σ onM (Γ (N);K)is k n k 1 7→ | integral,thatisitpreservestheintegralspaceM (Γ (N); ). We“define”theHecke k 1 K O operatorsT(ℓ) and S(ℓ), for every prime ℓ, acting on M (Γ (N);K) by describing k 1 theiractionontheq-expansion, a(ℓn,f)+ℓk−1a(n,f σ ), ifℓisprimetoN; a(n,T(ℓ)f)= ℓ |k ℓ a(ℓn,f), otherwise. (cid:26) ℓk−2a(n,f σ ), ifℓisprimetoN; a(n,S(ℓ)(f))= |k ℓ 0, otherwise. (cid:26) Notethatthesedefinitionsareconsistentwiththeonesontheclassicalellipticmodular forms.WedefinetheHeckealgebraH (Γ (N),ψ;A),resp.H (Γ (N);A)),forAei- k 0 k 1 therKor astheA-subalgebraofEnd (M (Γ (N),ψ;A)),resp.End (M (Γ (N);A)), K A k 0 A k 1 O generatedbyT(ℓ)andS(ℓ)forallprimesℓ. Similarlywedefineh (Γ (N);ψ;A)and k 0 h (Γ (N);A)whenwerestricttheactiontothespaceofcuspforms.Actuallyonehas k 1 that H (Γ (N),ψ;A) = H (Γ (N),ψ;Z) A and similarly for the other spaces. k 0 k 0 Z ⊗ FinallywenotethatwhenpN theactionoftheHeckeoperatorsisp-adicallyintegral | i.e. Tf f foreveryT H (Γ (N); ). p p k 1 K | | ≤| | ∈ O Wenowdefinep-adicHeckealgebras. Noticethatwehavethe -surjectiveho- K O momorphismsinducedbyrestrictionoftheHeckeoperators, H (Γ (Npm),ψ; ) H (Γ (Npn),ψ; ) for m n 1 k 0 K k 0 K O → O ≥ ≥ H (Γ (Npm); ) H (Γ (Npn); ) for m n 1 k 1 K k 1 K O → O ≥ ≥ Definition2 Wedefinethespaceofp-adicHeckealgebrasH (N,ψ; )(resp.H (N; )) k K k K O O by the projective limit, lim H (Γ (N),ψ; )(resp. lim H (Γ (N); )). Simi- n k 0 K n k 1 K O O larlywedefinethespac←es−h (N,ψ; )andh (N; ←)−. k K k K O O 3 P-ADICMODULARFORMSANDMEASURES 8 By definitionthisoperatorsacton the spacesM (N;A) andM (N,ψ;A) for A k k equaltoKor .Howeverthefacttheyarep-adicallyintegralallowustoextendtheir K O actionto the space of p-adicmodularformsM (N;A) and M (N,ψ;A). Ournext k k stepistodefineHida’sordinaryidempotenteattachedtotheHeckeoperatorT(p).We startwithagenerallemma, Lemma1 For any commutative -algebra R of finite rank over and for any K K O O x Rthelimitlim xn! existsandgivesanidempotentofR. n→∞ ∈ Proof See[16](p.201) . Definition3 Wedefineanidempotente inH (Γ (Npn,ψ; )andinH (Γ (Npn; ) n k 0 K k 1 K O O bythelimite =lim T(p)m!. MoreoverwedefineanidempotentinH (N; ) n m→∞ k K O andinH (N,ψ; )bytakingtheprojectivelimite=lim e . k K n n O ←− WewillbeinterestedinthespaceeM (N,ψ; ),usuallycalledtheordinarypart k K ◦ O ofM (N,ψ; )anddenotedbyM (N,ψ; ).Actuallythisspaceisnotthatlarge k OK k OK asthefollowinglemmaindicates, Lemma2 (Hida)Let C(ψ) be theconductorofthe characterψ. Definepositive in- tegers N′ and C(ψ)′ by writing N = N′pr and C(ψ) = C(ψ)′pt with (N′,p) = (C(ψ)′,p)=1. Lets:=max(t,1). Then, eM (N,ψ; ) M (Γ (N′ps),ψ; ) k K k 0 K O ⊂ O Proof: See[13]. Definition4 Wesaythatanormalizedeigenformf S (Γ (N )ψ)isan(p-)ordi- 0 k 0 0 ∈ naryformif, 1. ThelevelN oftheformf isdivisiblebyp. 0 2. TheFouriercoefficienta(p,f )isap-adicunit. 0 Thefollowinglemmaisprovedin[13](p.168), Lemma3 Letf S (Γ (N),ψ)beanewformwithk 2and a(p,f) =1. Then, k 0 p ∈ ≥ | | there is a uniqueordinary form f of weightk andcharacterψ such thata(n,f) = 0 a(n,f )forallnnotdivisiblebyp. Moreover,f isgivenby, 0 0 f(z), ifpdividesN; f (z)= 0 f(z) wf(pz), otherwise. (cid:26) − wherewistheuniquerootofX2 a(p,f)X+ψ(p)pk−1 =0with w <1.Moreover p − | | inthesecondcasei.e.(p,N)=1wehavethatN =Npandthata(p,f )=uwhere 0 0 uisthep-adicunitrootoftheaboveequation. 3 P-ADICMODULARFORMSANDMEASURES 9 LetusnowconsiderasurjectiveK-linearhomomorphismΦ:h (Γ (N ),ψ;K) k 0 0 → K thatisinducedbyanordinaryformf bysendingT(n) a(n,f ). Letusmore- 0 0 7→ overassumethatthismapissplit(wewillshowlaterthatinthecaseofinterestthiswill betrue)andinducesanalgebradirectdecomposition,h (Γ (N ),ψ;K)=K Afor k 0 0 ∼ × some summandA and let us denote by 1 the idempotentcorrespondingto the first f0 summandisomorphictoK.Wenowconsiderthelinearformℓ :S (N ,ψ;K) K f0 k 0 → definedby,ℓ (g) := a(1,1 e g). Notethat,bylemma2,thelinearformiswellde- f0 f0 fined. Proposition1 (Hida’slinear operator)Assume thatK containsall the Fourier co- 0 efficients of the ordinary form f . Then, the linear form ℓ has values in K on 0 f0 0 S (Γ (N pn),ψ;K ) forevery n 0. Furthermore, for g S (Γ (N pn),ψ;K ) k 0 0 0 k 0 0 0 ≥ ∈ wehave <h ,g > ℓ (g)=a(p,f )−npn(k/2) n N0pn f0 0 <h,f > 0 N0 0 1 whereh=f0ρ|k N0 −0 ,hn(z)=h(pnz). (cid:18) (cid:19) Proof See[13]p.175. Wenotethatifweconsideraconstantc(f ) suchthatc(f )1 h (Γ (N ); ) 0 ∈OK 0 f0 ∈ k 1 0 OK thenwehaveanintegralvaluedlinearformc(f )ℓ : S (N ,ψ; ) asthe 0 f0 k 0 OK → OK Heckeoperatorsarep-adicallyintegral p-adicmodularformsvaluedmeasures: Nowwe aregoingto definep-adicmea- suresassociatedwithp-adicmodularformsM(N; )forsomeN relativeprimeto K O p. Notethatitfollowsfromremark1thatwedonotneedtospecifytheweight. We let X to be a p-adic space that consists of some copies of Z and of a finite p productoffinite groups. For ourapplicationslater X isgoingto be justZ× = (1+ p ∼ pZ ) (Z/pZ)×. Let us write C(X; ) for the space of continuous functions of p K × O X withvaluesin andLC(X; )forthespaceoflocallyconstantfunctionson K K O O X. A measure µ on X with values in the space M(N; ) is just an -linear K K O O homomorphismfromC(X; )toM(N; ). K K O O LetusconsiderthespaceZ :=Z× (Z/NZ)×andforanelementz Z letus N p × ∈ N writez fortheprojectionofz tothefirstcomponent. WecandefineanactionofZ p N onthespaceM (Γ (Npr); )byf f z := zkf σ with σ asdefinedabove. k 1 OK 7→ | p |k z z ThisactioncanbeextendedtoM(N, )(see[14]p. 10). K O Definition5 (see[14])We saythatap-adicmeasureµ : C(X;O ) M(N;O ) K K → isarithmeticifthefollowingthreeconditionsaresatisfied, 1. Thereexistspositiveintegerksuchthatforeveryφ LC(X; ), K ∈ O µ(φ) M (Np∞; ) k K ∈ O Wewillcallktheweightofµ. 3 P-ADICMODULARFORMSANDMEASURES 10 2. There are continuous action Z X X and a finite order character ξ : N Z × such that µ(φ)z = z×kξ(z)→µ(φ(z x)) for every φ C(X;O ), N → OK | p · ∈ K wherektheweightofµ. Wethensaythatthearithmeticmeasureisofcharacter ξ. WesaythatthemeasureiscuspidalifµactuallytakesvaluesinS(N; ). K O Weareinterestedinattachingarithmeticmeasurestoagivenmodularform.Given a modularformf M (Γ (N),χ; ) with q-expansionf(z) = a(n,f)qn ∈ k 0 OK n≥0 wecanassociateameasuredµ onX :=Z× by, f p P dµ (φ) φ(n)a(n,f)qn, φ C(X; ) f K 7→ ∈ O n≥1 X wherewedefinetheactionofZ onZ×byz x z2x.Fromthefollowinglemmadue N p · 7→ p toShimuraweconcludethatdµ isanarithmeticmeasureofweightk andcharacter f χ. Lemma4 Letg = ∞ b(n,g)qn M (Γ (N),ω)andφanarbitraryfunctionon n=0 ∈ k 0 a b Ym =Z/NpmZ.DefiPneg(φ):= ∞n=0φ(n)b(n,g)qn.Thenforanyγ = c d ∈ (cid:18) (cid:19) Γ0(N2p2m),wehavethefollowiPngtransformationformula, g(φ) γ =ω(d)g(φ ) k a | whereφ (y)=φ(a−2y)forally Y =Z/NpmZ. a m ∈ Proof See[13](p. 190) ByaresultofHidain[14](p. 24corollary2.3)itfollowsthatactuallythemeasure µ ,onZ×,iscuspidal. f p Eisenstein measure and convolution: Of particular importance for us is the exis- tence, which follows from [21], of the following arithmetic measure of weight one, dE :C(Z ; ) S¯(L; )definedby, L K K O → O ∞ 2 φ(z)dE =  sgn(d)φ(d)qn K[[q]] ∈O ZZL (nXn,p=)1=1(dX,dL|n)=1      WecallthistheEisenstein-Katzmeasure. Forageneralarithmeticmeasureµ ofZ× g p associatedtoamodularformofweightℓandcharacterψwecandefineaconvolution operation,see forexample[13, 26], ofµ and dE. We considerthe action ofZ on g L C(Z×; )by(z⋆φ)(x) := ψ(z)zℓφ(z2x)forz Z andφ C(Z×; ). Fora p OK p p ∈ L ∈ p OK givenintegerk ℓandafiniteordercharacterχ:Z C× wedefinethearithmetic L ≥ → measure(µ dE) :C(Z×; ) S(L; )as g ∗ χ,k p OK → OK φ(x)(µL dE) := χ(z)zk−1(z−1⋆φ)(x)dE(z)dµL(x) ZZ×p g ∗ χ,k ZZ×p ZZL p g

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.