RESEARCHARTICLE Spatial patterns of multidrug resistant tuberculosis and relationships to socio- economic, demographic and household factors in northwest Ethiopia KefyalewAddisAlene1,2*,KerriViney1,EmmaS.McBryde3,4,5,ArchieC.A.Clements1 1 ResearchSchoolofPopulationHealth,CollegeofMedicine,BiologyandEnvironment,TheAustralian NationalUniversity,Canberra,AustralianCapitalTerritory,Australia,2 InstituteofPublicHealth,Collegeof MedicineandHealthSciences,UniversityofGondar,Gondar,Ethiopia,3 CentreforPopulationHealth, BurnetInstitute,Melbourne,Victoria,Australia,4 DepartmentofMedicine,TheUniversityofMelbourne, Parkville,Victoria,Australia,5 AustralianInstituteofTropicalHealthandMedicine,JamesCookUniversity, a1111111111 Townsville,Queensland,Australia a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Background OPENACCESS Understandingthegeographicaldistributionofmultidrug-resistanttuberculosis(MDR-TB)in Citation:AleneKA,VineyK,McBrydeES,Clements highTBburdencountriessuchasEthiopiaiscrucialforeffectivecontrolofTBepidemicsin ACA(2017)Spatialpatternsofmultidrugresistant thesecountries,andthusglobally.Wepresentthefirstspatialanalysisofmultidrugresistant tuberculosisandrelationshipstosocio-economic, tuberculosis,anditsrelationshiptosocio-economic,demographicandhouseholdfactorsin demographicandhouseholdfactorsinnorthwest Ethiopia.PLoSONE12(2):e0171800.doi:10.1371/ northwestEthiopia. journal.pone.0171800 Editor:OlivierNeyrolles,InstitutdePharmacologie Methods etdeBiologieStructurale,FRANCE AnecologicalstudywasconductedusingdataonpatientsdiagnosedwithMDR-TBatthe Received:November28,2016 UniversityofGondarHospitalMDR-TBtreatmentcentre,fortheperiod2010to2015.Dis- Accepted:January26,2017 trictlevelpopulationdatawereextractedfromtheEthiopiaNationalandRegionalCensus Report.SpatialautocorrelationwasexploredusingMoran’sIstatistic,LocalIndicatorsof Published:February9,2017 SpatialAssociation(LISA),andtheGetis-Ordstatistics.AmultivariatePoissonregression Copyright:©2017Aleneetal.Thisisanopen modelwasdevelopedwithaconditionalautoregressive(CAR)priorstructure,andwithpos- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which teriorparametersestimatedusingaBayesianMarkovchainMonteCarlo(MCMC)simula- permitsunrestricteduse,distribution,and tionapproachwithGibbssampling,inWinBUGS. reproductioninanymedium,providedtheoriginal authorandsourcearecredited. Results Dataavailabilitystatement:Allrelevantdataare Atotalof264MDR-TBpatientswereincludedintheanalysis.Theoverallcrudeincidence withinthepaperanditsSupportingInformation files. rateofMDR-TBforthesix-yearperiodwas3.0casesper100,000population.Thehighest incidenceratewasobservedinMetema(21casesper100,000population)andHumera(18 Funding:Theauthorsreceivednospecificfunding forthiswork. casesper100,000population)districts;whereasninedistrictshadzerocases.Spatialclus- teringofMDR-TBwasobservedindistrictslocatedintheEthiopia-SudanandEthiopia-Eri- Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. treaborderregions,wherelargenumbersofseasonalmigrantslive.Spatialclusteringof PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 1/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors MDR-TBwaspositivelyassociatedwithurbanization(RR:1.02;95%CI:1.01,1.04)andthe percentageofmen(RR:1.58;95%CI:1.26,1.99)inthedistricts;afteraccountingforthese factorstherewasnoresidualspatialclustering. Conclusion SpatialclusteringofMDR-TB,fullyexplainedbydemographicfactors(urbanizationandper- centmale),wasdetectedintheborderregionsofnorthwestEthiopia,inlocationswhere seasonalmigrantsliveandwork.Cross-borderinitiativesincludingoptionsformobileTB treatmentandfollowupareimportantfortheeffectivecontrolofMDR-TBintheregion. Introduction Tuberculosis(TB),adiseasethathaskilledapproximately2billionpeopleoverthelast200 years,remainsathreattohumankind[1].Itdisproportionallyaffectsthoselivinginlowand middleincomecountries,andwithincountries,peoplefromlowsocio-economicgroups[1– 3].ThemostrecentglobalTBreportestimatedthattherewere10.4millionnewcasesglobally (equivalenttoanincidencerateof142casesper100,000population)and1.4milliondeathsin 2015[4].Thegeographicdistributionofthediseasevariesacrosstheglobe,aswellaswithin countries,withpovertyandanumberofotherriskfactorsbeingstrongpredictorsofincidence [5–7].ThecontinentofAfricareportsparticularlyhighincidencerates;itaccountsfor26%of allTBcasesintheworldandthehighestreportedincidencerateof275casesper100,000popu- lation[4].Approximately87%oftheglobalTBburdenisreportedfrom30highTBburden countries[4,8].Ethiopiaisoneofthese30high-burdencountriesandhasbeenclassifiedas havinghighburdensofTB,multidrugresistantTB(MDR-TB)andTB-HIVco-infection[4, 8].Thecountryisstrivingtoreducethemagnitudeofthediseaseinlinewiththeobjectivesof theglobalEndTBStrategy[9]. Multidrug-resistantTBisdefinedasTBthatisresistanttoatleastisoniazidandrifampicin [10].TheemergenceofMDR-TBhasposedanadditionalchallengeforglobalandnationalTB controlefforts.Globally,in2015,therewereanestimated481,400newcasesofMDR-TB,and approximately250000deathsfromMDR-TB[4].Accordingtothe2016WHOglobalTB report,inEthiopiaanestimated2.7%and14%ofnewandpreviouslytreatedTBcaseshad MDR-TB[11].AmongnotifiedpulmonaryTBcases,morethan3300MDR-TBpatientswere estimatedtooccurin2015(equivalenttoanincidencerateof3.4casesper100,000popula- tion).TheMDR-TBcase-detectionrateisverylow;lessthanaquarteroftheestimated3300 MDR-TBpatientswereidentifiedin2015.However,itisimprovingandthereportednumber ofpatientswithMDR-TBhasincreasedfrom140in2010to597in2015[11,12].Thereasons behindtheemergenceofMDR-TBaremulti-factoral,andareassociatedwithsocio-economic, demographic,cultural,behavioural,clinicalandenvironmentalfactors.Previousspatialstudies onMDR-TBconductedinPeru[13–17],Moldova[18]andGeorgia[19]haveshownthat MDR-TBisclusteredinspecificgeographicalareasandclustersareassociatedwithlocation, socio-economicstatusandpopulationdensity[20,21]. TheidentificationofareaswhereMDR-TBisconcentratedcouldallowpolicymakersto implementtargetedinterventionsaimedatpreventionandmanagement.Thismightbepartic- ularlyimportantinresource-constrainedsettingsandinhighMDR-TBburdencountries.Tar- getedinterventionsmaybenecessaryincountriesthatfinditimpossibletoprovideuniversal MDR-TBservicesacrossthecountryasthediagnosisandtreatmentofMDR-TBisexpensive. PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 2/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors TheEthiopian2013nationalTBreportindicatedthatasignificantproportionofMDR-TB patientsdidnotgettheopportunitytoaccessMDR-TBtreatmentduetothescarcityoftreat- mentcentersandinadequatediagnosticfacilities[22]. Theuseofgeographicalinformationsystems(GIS)andspatialanalysistoidentifyhotspots ofdisease[23],maybehelpfultoidentifythegeographicalpatternsandecologicalpredictors ofMDR-TBinhighTBburdencountriessuchasEthiopia.However,thereareveryfewstudies inAfricathathaveassessthespatialdistributionofTB.Hence,theaimsofthisstudywere:1) todeterminethespatialdistributionofMDR-TBinnorthwestEthiopiausingasix-yearcohort; and2)toidentifydistrict-levelsocio-economic,demographic,householdandenvironmental variablesassociatedwiththespatialdistributionofMDR-TBinthisregion. Methods Studydesignandarea Thiswasanecologicalstudy,usingMDR-TBdatafromnorthwestEthiopiaaggregatedatthe districtlevel.NorthwestEthiopiahasavarietyofgeographicalfeatures,includingthehighest mountainandthelargestlakeinthecountry,andageographicalboundarywithbothSudan andEritrea(Fig1). Morethan8millionpeopleliveinthearea,in45differentdistrictsandtowns;approxi- mately85%ofthepopulationlivesinruralareas[24].TheUniversityofGondarHospitalis oneoftheoldestreferralhospitalsintheareaandtheonlyhospitalthatprovidesMDR-TBser- vicesinnorthwestEthiopia.IndividualswhoarelivinginnorthwestEthiopiaandwhodevel- opedresistancetofirstlineanti-TBdrugsorwhoaresuspectedofhavingMDR-TBare referredtoUniversityofGondarHospitalfordiagnosisandtreatment. WhileTBpatientscanbediagnosedusingsputumsmearmicroscopyandtreatedwithfirst lineanti-TBdrugsatthelocallevel,MDR-TBpatientsarediagnosed(basedonthelaboratory resultsobtainedfromtheregionalornationallaboratorycentre)andtreatedatGondarUni- versityHospital.IntheEthiopiancontext,thenationalTBguidelinerecommendsthatdrug- susceptibilitytesting(DST)isusedforhighriskgroupswhoareatincreasedriskofhaving drugresistantTB.Highriskgroupsareidentifiedbasedonpatienthistory,suchas:previous Fig1.Mapofthestudyarea,northwestEthiopia. doi:10.1371/journal.pone.0171800.g001 PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 3/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors exposuretoanti-TBtreatment(i.e.atreatmentoutcomeoffailure,treatmentafterrelapse, treatmentafterlosstofollowupandprevioustreatmentwithanunknowntreatmentout- come),exposuretoaknownMDR-TBcase,co-morbidconditionssuchasHIV/AIDSand otherconditionsassociatedwithmal-absorption[22,25].Patientssuspectedofhaving MDR-TBarereferredtoUniversityofGondarHospitalforfurtherdiagnosisandtreatment. Thehospitalstaffcollectasputumsamplefromthepatientandsendittothenationalor regionallaboratoryforconfirmationofthediagnosis.PhenotypicDST,lineprobeassay(i.e GenoTypeMTBDRplusV.2.o,HAINLife,Science,Nehren,Germanuny)andGeneXpertare performedatnationalandregionalreferencelaboratoriestoidentifyMDR-TBcases.Patients diagnosedwithMDR-TBaretreatedatGondarUniversityHospitalfreeofcharge.Details aboutthetreatmentregimenusedhavebeendescribedelsewhere[26]. Studypopulation ThestudypopulationincludedallMDR-TBcasesregisteredandlivinginthecatchmentarea oftheUniversityofGondarHospitalMDR-TBtreatmentcentre(45contiguousdistrictsin northwestEthiopia),registeredbetweentheyears2010and2015.Patientswhoseresidencelay outsideofthehospital’scatchmentarea(i.e.fromadjacentregionsanddistricts)wereexcluded fromthestudy. Datasourceandvariablesofthestudy Dependentvariable. ThenumberofMDR-TBpatientsineachdistrictwasthedependent variable.TheMDR-TBdatasetincludedindividual-leveldemographic,laboratoryandclinical variables.ThedatawerecollectedbystafffromtheUniversityofGondarMDR-TBtreatment centre.TheseMDR-TBdatawereaggregatedtothedistrictleveltoobtainthenumberof MDR-TBpatientsineachdistrictforeachyear. Independentvariables. District-levelecologicaldatawereincludedasindependentvari- ables.AnumberofvariableswereextractedfromtheEthiopiannationalandregionalcensus report[24,27].Thesevariablesincludeddemographicfactors(i.e.percentageofmaleand female,percentageofpeoplelivinginruralandurbancommunities);socioeconomicvariables (i.e.illiteracyrate,economicinactivityandtheunemploymentrate);housingconditions(i.e. theaveragenumberofhouseholdsperhousingunitandtheaveragenumberofroomsper house);measuresofindoorairpollution(i.e.percentageofhouseswithtraditionalkitchens andusingcharcoal,firewoodanddungforcooking);andmigrationvariables(i.e.thepercent- ageofallmigranttypesintheareaandthepercentageofnewmigrants(lessthan5years)in thearea).Thetermeconomicinactivity,accordingtotheEthiopianPopulationandHousing Censusreport,referstotheproportionofpeopleagedtenyearsandabovewhowereneither engagednoravailabletobeengagedintheproductionofeconomicgoodsandservicesduring agivenreferenceperiod[24]. ApolygonshapefilesforEthiopia’sadministrativeboundariesatthedistrictlevelwas obtainedfromtheOpenAfricawebsite[28].Theboundariesofthedistrictsrequiredforthe studywereselected.Alloftheextracteddatawerelinkedandgeoreferencedwiththedistrict polygonsusingtheGIS,ArcGIS10.1.3[29].Thepopulationdensityofeachdistrictwascalcu- latedusingArcGISbydividingthetotalpopulationineachdistrictbytheareaofthatdistrict insquarekilometres. Dataanalysis MDR-TBincidencerate. TheoverallcrudeincidencerateofMDR-TBwascalculatedby takingthetotalnumberofMDR-TBcasesreportedinthesix-yearstudyperiodasthe PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 4/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors numeratorandthemid-pointtotalpopulationduringthesametimeperiodasthedenomina- tor.Thesexandresidenceadjustedstandardizedmorbidityratio(SMR)wascalculatedfor eachdistrictusingtheformula:Y =[O/E];whereYistheSMRindistricti,Oistheobserved i i i numberofMDR-TBcasesinthedistrictandEistheexpectednumberofMDR-TBcasesin thedistrictacrossthestudyperiod.TheexpectednumberofMDR-TBcasesforeachdistrict wascalculatedbymultiplyingthemid-pointpopulationofeachdistrictbytheoverallcrude MDR-TBincidencerateforthestudyareaandperiod. Spatialautocorrelationanalysis. Spatialautocorrelationwasexploredataglobalscale usingMoran’sIstatisticandatalocalscaleusingLocalindicatorsofspatialassociation (LISA),estimatedusingtheAnselinLocalMoran’sIstatistic,andtheGetis-Ordstatistic.The globalMoran’sIstatisticwasusedtoassessthepresence,strengthanddirectionofspatialauto- correlationoverthewholestudyareaandtotesttheassumptionofspatialindependenceinthe implementationofthespatialpatternanalysis.TheLISAandtheGetis-Ordstatisticswere usedtodetectlocalclusteringofMDR-TBandtoidentifythelocationsofhot-spots.These analyseswereconductedusingtoolsprovidedinArcGIS. Non-spatialPoissonregressionanalysis. Becausethedependentvariable(i.e.thenumber ofMDR-TBcasesineachdistrict)wasacountvariableandararedisease,weassumedthatit followedaPoissondistribution.UnivariateandmultivariatePoissonregressionmodelswere initiallycomputedusingSTATAversion14software(StataCorp.2015.StataStatisticalSoft- ware:Release14.CollegeStation,TX:StataCorpLP),bytakingthenumberofMDR-TBcases recordedbydistrictsduring2010–2015asthedependentvariableandallothervariablesas independentvariables.Thoseindependentvariablesthathadap-valuelessthan0.2intheuni- variatePoissonregressionmodelwerefittedtothefinalmultivariatePoissonregressionmodel andwereconsideredforfurtherspatialanalysis.Allsignificantvariablesweretestedformulti- collinearityandthosevariableswithavarianceinflationfactor(VIF)greaterthan6were excludedfromthefinalmodel. SpatialPoissonregressionanalysis. WeconstructedthreedifferentBayesianspatial modelsusingWinBUGSversion1.4.3software(MedicalResearchCouncilBiostatisticsUnit, Cambridge,UnitedKingdom).Inthefirstmodel(ModelI),weassumedthatspatialautocorre- lationwasnotpresentintherelativeriskofMDR-TBandamodelwithoutaspatialcomponent wascomputed.Allofthecovariatesselectedaboveinthenon-spatialmultivariatePoisson regressionanalysiswereincorporatedasfixedeffects,andunstructuredrandomeffectsfordis- trictswereincludedinthemodel.Theassumptionsofthismodelwerethat:1)thenumberof MDR-TBcasesthatoccurredinonedistrictwereindependentofthenumberofMDR-TB casesintheotherdistricts,afteraccountingforthecovariates;and2)thevariancewashomoge- neousacrossthestudyarea.Tohandlethepossiblespatialdependencyofobservationsandthe violationofhomogeneityofvariancewithineachdistrictduetothespatialnatureofthedata,a secondmodel(ModelII)containingspatiallystructuredrandomeffectswasconstructedusing aBayesiansmoothingconditionalautoregressive(CAR)modelfortherandomeffects. Finally,athirdmodel(ModelIII),aconvolutionmodel,containingthecovariatesandboth theunstructuredandspatiallystructuredrandomeffects,wasconstructed.Thismodel assumedthattheobservednumberofMDR-TBcases(Y)forithdistrictfollowedaPoissondis- tributionwithamean(μ): YePoissonðmÞ; i i LogðmÞ¼LogðEÞþy i i i yi¼aþb X þ...::b X þU þV li li ni ni i i PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 5/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors WhereE isthesexandresidence-adjustedexpectednumberofMDR-TBcasesindistricti;θ i i isthelogrelativerisk(RR)determinedbytheintercept(α),thecoefficientsofthecovariates (β ...β ),theunstructuredrandomeffects(U)andthespatiallystructuredrandomeffects 1i ni i (V).Thespatiallystructuredrandomeffects(V)werecomputedusingaCARpriorstructure, i i whichisdefinedusinganadjacencymatrixtodeterminethespatialrelationshipsbetweendis- tricts.TheadjacencymatrixforeachdistrictwasgeneratedusingArcGIS.Aweightof1was giveniftwodistrictswereneighbouringandaweightof0wasgiveniftwodistrictswerenot neighbouring.Twodistrictswereconsideredtobeneighbouringiftheysharedthesameedges orcorners(i.e.queencontiguity).Priorprobabilitydistributionsforthecoefficients(β)were assumedtohavenormaldistributionswithamean=0andaprecision(i.e.inverseofvariance) =1x10−6.Fortheintercept(α)flatpriordistributionswasused(i.e.anon-informative, improperpriorwithbounds-1and+1).Theunstructuredrandomeffects(U)andspatially i structuredrandomeffects(V)wereassumedtohaveameanofzeroandaprecision(inverse i ofvariance)of1/σ 2and1/σ 2respectively.Thepriorsfortheprecisionoftheunstructured u v andspatiallystructuredrandomeffectswereassignedanon-informativegammadistribution withashapeandscaleparametersof0.001(S1Table). Theposteriorparameterswereestimatedfromtheprioranddatalikelihoodinformation usingaBayesianMarkovChainMonteCarlo(MCMC)simulationapproachwithGibbssam- pling,employedbyWinBUGS.Afteraninitialburn-inof1,000iterations,themodelswere runsubsequentlyfor1,000,000iterations.Forallmodels(asevidencedfromvisualinspection ofposteriorkerneldensitiesandhistoryplots),convergenceoccurredwithinthefirst10,000 iterations.Onehundredthousandvaluesfromtheposteriordistributionofeachparameter werestoredforsummarymeasuressuchastheposteriormean,standarddeviationandthe 95%credibleinterval(CrI).TheDevianceInformationCriterion(DIC)wasalsostoredfor modelselection,wherealowerDICindicatesapreferredmodel. Ethicalclearance EthicalclearancewasobtainedfromtheInstitutionalReviewBoardoftheUniversityofGon- darandfromtheAustralianNationalUniversityHumanResearchEthicsCommittee(protocol number2016/219).Further,theUniversityofGondarHospitalprovidedpermissiontoaccess thedata.Asthisstudyusedsecondarydata,informedconsentwasnotobtainedfromeachof thestudyparticipants. Results Descriptiveanalysis Amongatotalof282MDR-TBpatientsnotifiedduringthesixyearperiodinnorthwestEthio- pia,17(6.0%)patientsresidedoutofthestudyareaandwerethereforeexcludedfromtheanal- ysis.Ofthe264patientswhowereincluded,159(60.2%)weremaleand115(56.4%)were fromurbanlocations.ThehighestnumberofMDR-TBcaseswerereportedinthetwohighly populatedandurbanareasoftheregion,namelyGondar(60cases;23.0%),theplacewherethe MDR-TBtreatmentcenterislocatedandBahirdar(31cases;12.0%),thecapitalcityofthe region.Ninedistricts,manyofthemlocatedfarawayfromthetreatmentcentre,didnotreport anyMDR-TB.TheoverallcrudeincidencerateofMDR-TBforthesixyearperiodwas3.0 casesper100,000population,rangingfrom0to21casesper100,000population,perdistrict. WeobservedstrongspatialvariationintheMDR-TBincidencerateacrossthedistricts. ThemapinFig2showsthespatialdistributionoftheMDR-TBSMRinnorthwestEthiopiaat thedistrictlevel.ThehighestSMRwasobservedinMetema(7.0)andHumera(6.1)districts, bothlocatedintheEthiopia-SudanandEthiopia-Eritreaborderregionsofthecountry(Fig2). PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 6/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors Fig2.Choroplethmapshowingthegeographicaldistributionofmultidrug-resistanttuberculosisstandardized morbidityratiosacrosseachdistrictinthenorthwestEthiopia,2010to2015. doi:10.1371/journal.pone.0171800.g002 SpatialdistributionofMDR-TB TheglobalMoran’sindexstatisticfortheMDR-TBincidencerateper100,000populationwas 0.14(p-value=0.04),indicatingthepresenceofsignificant,positivespatialautocorrelationin MDR-TBincidencerateoverthewholestudyarea.IntheLISAanalysis,districtssuchas Quara,MetemaandMirabArmacho(alllocatedintheborderregions)showedahigh-high typeofrelationship,meaningthatthesedistrictshadahighincidenceofMDR-TBandthesur- roundingdistrictshadalsohadhighMDR-TBincidence(Fig3a).Humeradistrict,theother districtwhichisalsofoundintheborderregionofthecountry,hadahigh-lowtypeofrelation- shipwhichindicatedthattherewasahighincidenceofMDR-TBinthisdistrict,surrounded bydistrictswithlowincidenceofMDR-TB.UsingtheGetis-Ordstatistic(Fig3b),weobserved thatMetemaandHumerawerehotspotsat99%and95%confidencelevels,respectively. Therewerenostatisticallysignificantrelationshipsforallotherdistricts(Fig3). PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 7/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors Fig3.Spatialclusteringofmultidrug-resistanttuberculosisincidenceinnorthwestEthiopia,2010to2015,basedon:a) LocalindicatorsofspatialassociationusingAnselinLocalMoran’sIstatistic;andb)andtheGetis-OrdGi*statistic. doi:10.1371/journal.pone.0171800.g003 FactorsassociatedwithMDR-TBclusters ThemultivariablePoissonregressionresultsarepresentedinTable1.Atthearealevel,the incidenceofMDR-TBper100,000populationwaspositivelyassociatedwithpopulationden- sitypersquarekilometer(RR:1.01;95%CI:1.00,1.01),theproportionofthepopulationwho wereeconomicallyinactive(RR:1.05;95%CI:1.03,1.07),theproportionofpeoplelivingin urbanareas(RR:1.02;95%CI:1.01,1.04)andtheproportionofmalesinthepopulation(RR: 1.58;95%CI:1.26,1.99). Table1. AmultivariablefixedeffectsPoissonregressionmodelofsocio-economicanddemographicfactorsinfluencingdistrict-levelincidence ofmultidrugresistanttuberculosisper100,000populationinnorthwestEthiopia,2010to2015. Variables Coefficients Relativerisk(95%CI*) P-value Populationdensitypersquarekilometre 0.01 1.01(1.00,1.01) 0.001 Economicallyinactivepopulation(%) 0.05 1.05(1.03,1.07) <0.001 Migrantpopulation(%) 0.001 1.00(0.99,1.01) 0.887 Malepopulation(%) 0.46 1.58(1.26,1.99) 0.01 Urbanresidence(%) 0.02 1.02(1.01,1.04) 0.03 *Confidenceinterval. doi:10.1371/journal.pone.0171800.t001 PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 8/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors Table2. Poissonregressionmodelfortheassociationofsocio-economic,demographic,housingconditionandspatiallystructuredrandom effectatthedistrictlevelwithcasesofmultidrug-resistanttuberculosisinnorthwestEthiopia,2010to2015. ModelI: ModelII: ModelIII: unstructured structured structured&unstructured Variable Coefficient,posterior RRb,Posterior Coefficient,posterior RRb,Posterior Coefficient,posterior RRb,Posterior mean(95%CrIa) Mean(95% mean(95%CrIa) Mean(95%CrIa) mean(95%CrIa) Mean(95%CrIa) CrIa) α(Intercept) -1.2(-1.67,-0.78) -1.20(-1.52,-0.90) -1.21(-1.66,-0.81) Male(%) 0.29(0.05,0.54) 1.35(1.05, 1.16(0.88,1.44) 3.22(2.41,4.23) 0.29(0.05,0.54) 1.35(1.05,1.72) 1.71) Urbanresidence(%) 1.16(0.88,1.44) 3.22(2.40, 0.29(0.05,0.54) 1.35(1.05,1.72) 1.16(0.88,1.44) 3.21(2.40,4.22) 4.23) Populationdensityd 0.19(-0.23,0.62) 1.24(0.79, 0.18(-0.35,0.71) 1.24(0.70,2.04) 0.19(-0.28,0.66) 1.24(0.76,1.94) 1.87) Migrants(%) -0.10(-0.55,0.34) 0.93(0.58, -0.26(-0.72,0.20) 0.79(0.49,1.22) -0.14(-0.61,0.32) 0.90(0.54,1.38) 1.41) Economicallyinactive -0.15(-0.53,0.23) 0.87(0.59, -0.17(-0.58,0.26) 0.87(0.56,1.29) -0.15(-0.53,0.27) 0.88(0.59,1.31) (%) 1.26) Heterogeneity Unstructuredvariance 1.06(0.57,2.29) - 0.03(0.002,2.18) Structuredvariance - 3.70(1.96,8.33) 0.008(0.001,5.56) DICc 561.7 568.5 564.1 aCredibleinterval, brelativerisk, cdevianceinformationcriterion, dpopulationdensitypersquarekilometer doi:10.1371/journal.pone.0171800.t002 AsindicatedbythelowDICvalueinTable2,themodelwithoutaspatialcomponenthada betterfitthanthemodelscontainingspatiallystructuredrandomeffects.Thissuggestedthat despitethepresenceofspatialautocorrelationforthedependantvariablesintheexploratory phaseofthestudy,andasevidencedbytheglobalandlocalMoran’sIstatistic,theinclusionof covariatesresultedinnoresidualspatialautocorrelation,andthustheCARrandomeffects modelswereredundant.Inotherwords,thecovariatesincludedinthemodelsexplainedthe spatialautocorrelationandspatialclusteringevidentintheMDR-TBdata. ThegeographicaldistributionofMDR-TBinthedistrictswaspositivelyassociatedwiththe percentageofthepopulationthatwasmaleandthepercentageofthepopulationlivingin urbanlocations.Theothervariablesincludedinthemodelswerenotsignificantlyassociated withMDR-TBincidence.Mapsofthepercentageofthepopulationwhoweremaleandwho werelivinginurbanlocationsareprovidedinFig4,demonstratingthatthespatialdistribution ofthediseaseandthesepredictorsweresimilar. Discussion WefoundthatMDR-TBwasgeographicallyclusteredinthenorth-westborderdistrictsof northwestEthiopia.Wealsofoundseveralcharacteristicsofthedistrictsthatwereassociated withhigherratesofMDR-TBincludingtheproportionofmalesinthepopulation,urbanisa- tionandpopulationdensity.Ofinterest,spatialclusteringwasnotapparentoncethesedistrict characteristicsweretakenintoaccount,suggestingthattheproportionofmalesandurbanisa- tionexplainedthespatialdistributionofMDR-TBinthisregionofEthiopia. PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 9/14 SpatialpatternsofMDR-TBandsocio-economicanddemographicfactors Fig4.Choroplethmapsshowingthegeographicaldistributionofthepercentageofthedistrict(a)whoaremaleand(b)who liveinurbancommunitiesacrossnorthwestEthiopia,2010to2015. doi:10.1371/journal.pone.0171800.g004 SpatialclustersweredetectedinMetemaandHumeradistricts,bothofwhicharelocatedin theEthiopia-SudanandEthiopia-Eritreaborderregionsofthecountry.Thesedistrictsare locatedfarfromreferralhospitalsandcontainahighnumberofseasonalmigrants(mostly male)duetothepresenceofagriculturalinvestmentsintheseareas.Thedetectionofclusters ofMDR-TBinagriculturalinvestmentareasandintheborderregionsofthecountrymay meanthatMDR-TBispoorlycontrolledintheseitinerantandhardtoreachpopulations.This highlightstheriskofcross-bordertransmissionofMDR-TBinEthiopia,EritreaandSudan, particularlyinpredominantlymalemigrantpopulations.Therefore,wesuggestthatmobileTB andMDR-TBservicesshouldbeconsideredtoaddresstheissueofTBamongtheseasonal migrantworkerpopulationintheborderregions. Inpreviousstudies,similarcross-borderproblemsofMDR-TBineastAfricaalongthe Somalia-Kenyaborder[30]andinMongoliaalongtheTrans-SiberianRailwayline[31]have beenreported.Thisreinforcestheneedforcross-bordercollaborationfortheeffectivecontrol ofMDR-TB[32]. ThemajorityofMDR-TBpatientsinourstudyweremale.Previousstudiesconductedin EthiopiahavealsoreportedthatMDR-TBismorecommonamongmales[33,34].Thiscould berelatedtotheconvergenceofotherriskfactorsforTB,suchascigarettesmokingandthe needforalongdurationoftreatment(notingthat,asmalesaremorelikelytotravelfrom placetoplaceinEthiopia,particularlyasseasonalmigrants,theymayhaveahigherlikelihood ofbeinginfectedwithTBorexperiencingtreatmentinterruptions)[35,36].Poorcompliance withanti-TBdrugshaspreviouslybeendocumentedamongseasonalmigrants[37]and MDR-TBismoreprevalentamongpeoplewhohavenotcompletedacourseofTBtreatment [38]. PLOSONE|DOI:10.1371/journal.pone.0171800 February9,2017 10/14
Description: