ebook img

Spatial image of reaction area from scattering.II: On connection between the differential cross-sections in transverse momentum and in nearest approach parameter PDF

0.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spatial image of reaction area from scattering.II: On connection between the differential cross-sections in transverse momentum and in nearest approach parameter

Spatial image of rea tion area from s attering. II : On onne tion between the di(cid:27)erential ross-se tions in transverse momentum and in nearest approa h parameter. ∗ N.Bobrovskaya and A.N.Vall Department of Theoreti al Physi s, Irkutsk State University, Irkutsk, 664003 Russia † M.V.Polyakov Institut fur Theoretis he Physik II Ruhr-Universitaet Bo hum, NB6 D-44780 Bo hum, Germany ‡ A.A.Vladimirov Bogoliubov Laboratory of Theoreti al Physi s, JINR, 141980, Mos ow Region, Dubna, Russia 8 0 C 0 The onne tionbetweendi(cid:27)erentia~bl rossse tionsofparti le reationontransSveOr(se2,m1)omentum 2 and on nearest app~broa h parameter is investigated in the ontext of formalism algebra. Where parameter hara terizes parti le reation area. This distribution tightly on erned with n spatial stru tureof parti les intera tion andallows intuitive physi interpretation. It is shown that a b J area of large transverse momentum1 /a2rriesbiqn the1main oqntribution to distribution fun tiCon on in ba kward semisphere in interval ≤ ∼ , where is momentum of the parti le . The 1 left border of inequation de(cid:28)nes by Geizenberg un ertainty relation on parameters "momentum - 1 radius of lo alization area" . The spatial stru ture of reation area in transverse momentumplane C ] is a set of dis rete axially~q-symm~ebtri al (for spinless parti les ) zones. The re eived onne tion h between rossse tionson ⊥ and isexa tanddon't onne twithanymodel. Soabilityappearsto C -p awnaaslyrez eetivheedspanateiaxlas ttrrue ltautrioenofbettawrgeeetnu<sinb2±g e>xpaenrdim<enctoasl2dθa±ta>offorpaarntyi lAe+Ban→gleCd+istDribpurtoio nes.seIst p A B e in enter of parti les and mass frame, where average is gobi2ng on orresbp2oqn2d>ing~2d/i4(cid:27)erential h ross-se tions<. cIotsi2sθs±ho>w>n1t/h8at quantum-me hani onstrain on spe truγm+p( π0+p ) brings [ etone rognystEraγin=5Gev. . Asappli ationitis onsideredthepro ess → atphoton 2 v PACSnumbers: 8 9 3 C DIFFERENTIAL CROSS-SECTION ON THE TRANSVERSE MOMENTUM OF PARTICLE 3 . 9 0 In thiCs paper we will reSprodu e in detail the derivation of onne tion between the di(cid:27)erential ross-se tion in 7 parti le momentum and -matrix element [1℄. As in the framework of the same s heme the similar al ulation for b 0 the ross-se tionon nearest approa h parameter [2℄ will be made. A+B C +D C v: Let us examine~qthe pro ess → C for two physi a~µl, qa,sǫe>s. In the (cid:28)rst ase parti le is reated with i (cid:28)xed momentum , the se ond, parti le is reated in state | . The di(cid:27)erential ross-se tion on transverse X C momentum of the parti le is r a dσ± 1 dN± = . dΩ n n TV ~u dΩ (1) q~ 1 2 q~ | | ~u n ,n A B ( ) C 1 2 Here is relative speed of initial parti les, are densities of parti les and , ± means that the parti le z A N s atters to the forward and ba kward half-sphere ( -axis is dire ted along the momentum of parti le ), and is C D V T the total number of parti les and reation events in all spa e (volume ) during in(cid:28)nite time ( ). This is N = d~q d~q <~q;~q Fˆ in> 2 = N(ǫ) = 1 1 | | | | Z ǫ=±1 X = d~q q2dq dΩ <~q ,ǫ q2 q2;~q Fˆ in> 2 , (2) 1 q~ | ⊥ − ⊥ 1| | | ǫX=±1Z q where in>=(2π)3n1/2n1/2a+(p~ ) a+(p~ ) 0> (2π)3n1/2n1/2 p~ ;p~ > . | 1 2 1 2 | ≡ 1 2 | 1 2 2 A B Fˆ S S =I+iFˆ The reationoperatorsarerelatedtoparti les and ,operator is onne tedwith -matrixbyrelation . Translational invarian e allows present the matrix element in the form: <f Fˆ in>=δ(4)(q q )<f Aˆin> , in f | | − | | (3) therefore: TV N = d~q q2dq dΩ δ(4)(q+q P) (2π)4 1 q~ 1− × ǫ=±1Z X <~q ,ǫ q2 q2;~q Aˆ in> 2 = ×| ⊥ − ⊥ 1| | | = TV q q2dq dΩ δ(E + (~q P~)2+m2 P0) (4) (2π)4 q~ q − D− × ǫ=±1Z q X <~q ,ǫ q2 q2;~q =P~ ~q Aˆ in> 2 . ×| ⊥ − ⊥ 1 − | | | q P =P +P δ C 1 2 Here, the four-momentum . In (4) the - fun tion determines the energy shell for parti le rea tion : E + (~q P~)2+m2 P0) =0 . q − D− (5) (cid:26) q (cid:27)q=q˜ Let us de(cid:28)ne: E = (~q P~)2+m2 D − D q qE E λ(~q )= q D . (6) ⊥ (q2P0−(~q·P~)Eq)q=q˜ Then the following relation is valid: δ(E + (~q P~)2+m2 P0)=λ(~q ) δ(q q˜) . q − D− ⊥ − (7) q q Integrating (4) over we get: TV N = dΩ q2 λ(~q ) (2π)4 q~ ⊥ × ǫ=±1Z X (8) <~q ,ǫ q2 q2;~q =P~ ~q A in> 2 , q =q˜ , q = ~q . × | ⊥ − ⊥ 1 − | | | | | q C So, we obtain a relation for parti le transverse momentum distribution: dN± TV = q2λ(~q ) <~q , q2 q2;~q =P~ ~q A in> 2 , q =q˜. dΩ (2π)4 ⊥ | ⊥ ± − ⊥ 1 − | | | (9) q~ q Let us de(cid:28)ne: A(ǫ)(~q)=<~q ,ǫ q2 q2;~q =P~ ~q A p~ ;p~ > , q =q˜. ⊥ − ⊥ 1 − | | 1 2 (10) q Then (9) takes a view: dN± =(2π)2TVn n q2λ(~q ) A(±)(~q)2 , q =q˜. 1 2 ⊥ dΩ | | (11) q~ The di(cid:27)erential ross-se tionis resulted by substitution (11) to relation (1). dσ± Here we mark an important noti e. An angle dependents in ross se tion dΩq~ appears not only through variable ~q q˜ A B C ⊥ , but ingeneral asealsothrough . Inthe frameofparti les and entreofmass( .m.f.) theparti le energy s=(p +p )2 A B de(cid:28)ned only through square of invariant mass . And it is 1 E⋆ = (s+m2 m2 ) . C 2√s C − D (12) 3 So: q˜=p⋆ = (E⋆)2 m2 . C C − C q E⋆ And C isn't depend for s attering angle (the star means .m.f.). The situation hanges in the labor frame (l.f.). In κ this ase there are riti al parameter whi h is [3℄ √s p⋆ κ= · C m p C A · κ>1 C . In the ase the onne tion betweenparti le momentum and s atteringanglehasa single meaningand has a view: √sE⋆p cos(θ)+(E +m )[s(p⋆)2 m2p2 sin2(θ)]1/2 q˜=p = C A A A C − C A , C (E +m )2 p2 cos2(θ) (13) A B − A 0 < θ < π where is s attering angle in l.f. (there isn't the maximum angle limitation). We will ba k to dis uss this expression below. ~b THE DIFFERENTIAL CROSS-SECTION ON NEAREST APPROACH PARAMETER IN C.M.F. C ~µ,q,ǫ> out> Nowwedis ussthe ase,whentheparti le reatesinstate| . Choosingforstate| the orresponding C D basis, we obtain following relation for the total number of and parti les reation events [2℄: N =(2π)2 d~q q2dq dΩ < ~µ,q,ǫ;~q Fˆ in> 2 . 1 µ~ 1 | | | | (14) ǫ=±1Z X < ~µ,q,ǫ;~q 1 CAs distin t from the previous ase, the state | is not a state wi<th ~µa,dqe,(cid:28)ǫ;n~qe moFˆmeinntu>m. So the pdaσ±rti le ross-se tion in this state an't be expressed through the matrix element 1 | | . To (cid:28)nd dΩµ~ we C will use a state expansion on states with the (cid:28)xed parti le transversemomentum [2℄: 1 < ~µ,q,ǫ;~q = ξ¯(~q ,~µ)<~q ,ǫ q2 q2;~q dΩ . 1 | (2π)2 ⊥ ⊥ − ⊥ 1| q~ (15) Z q Substituting this expansion to (14) we obtain: 1 N = d~q q2dq dΩ dΩ dΩ ξ¯(~q ,~µ) ξ(~k ,~µ) (2π)2 1 µ~ q~ ~k ⊥ ⊥ × ǫ=±1Z X (16) F(~q ,~q ) F¯(~k ,~q ) , ~q = ~k =q , ⊥ 1 ⊥ 1 × | | | | where we use a notation: <~q ,ǫ q2 q2;~q Fˆ in>=F(~q ,~q ) . ⊥ − ⊥ 1| | ⊥ 1 (17) q Let us make an identi al transformationin (16): F(~q ,~q )=[F(~q ,~q ) F(~k ,~q )]+F(~k ,~q ) , ⊥ 1 ⊥ 1 ⊥ 1 ⊥ 1 − F¯(~k ,~q )=[F¯(~k ,~q ) F¯(~q ,~q )]+F¯(~q ,~q ) . ⊥ 1 ⊥ 1 ⊥ 1 ⊥ 1 − Then: 1 N = Re d~q q2dq dΩ dΩ dΩ ξ¯(~q ,~µ) ξ(~k ,~µ)F(~q ,~q )2 (2π)2 1 µ~ q~ ~k ⊥ ⊥ | ⊥ 1 | − ǫ=±1Z X 1 1 d~q q2dq dΩ dΩ dΩ ξ¯(~q ,~µ) ξ(~k ,~µ) − (2π)22 1 µ~ q~ ~k ⊥ ⊥ × (18) ǫ=±1Z X F(~q ,~q ) F(~k ,~q )2 , ~q = ~k =q . ⊥ 1 ⊥ 1 ×| − | | | | | 4 ξ(~k ,~µ) ⊥ The se ond term in (18) is turned to zero, owing to the ompleteness of the system of basi fun tions [2℄ : dΩ ξ¯(~q ,~µ) ξ(~k ,~µ) δ(~k ~q ) . µ~ ⊥ ⊥ ⊥ ⊥ ∼ − Z Finally we obtain: 1 N = Re d~q q2dq dΩ dΩ dΩ ξ¯(~q ,~µ) ξ(~k ,µ~)F(~q ,~q )2 . (2π)2 1 µ~ q~ ~k ⊥ ⊥ | ⊥ 1 | (19) ǫ=±1Z X N ~q ⊥ Su h representation for is universal in the meaning that it follows both di(cid:27)erential ross-se tionsin terms of µ~ N and alsoin terms of . ThisaFˆllowsAˆmarkoutsingularfa torsin , on~qne tedwithin(cid:28)nite time andvolume. Turning 1 to the matrix elements from to and integrating over momentum , we get: VT N = Re q2dq dΩ dΩ dΩ ξ¯(~q ,~µ) ξ(~k ,~µ) (2π)6 µ~ q~ ~k ⊥ ⊥ × ǫ=±1Z X (20) δ(E + (~q P~)2+m2 P0) A(ǫ)(~q)2 . × q − D− | | q ~µ q If we integrate this orrelation over the parameter and momentum then we automati ally obtain relation (11). ~k ⊥ But we will integrate over momentum . So we have: VT N = Re q2dq dΩ dΩ κ(µ) ξ¯(~q ,~µ) (2π)6 µ~ q~ ⊥ × ǫ=±1Z X (21) δ(E + (~q P~)2+m2 P0) A(ǫ)(~q)2 , × q − D− | | q where [4℄ 2π2 √π iµ 1 2 κ(µ)= ξ(~k ,~µ) dΩ = = √π Γ( + ) . ⊥ ~k ch(πµ) Γ(iµ + 3)2 2 4 (22) Z | 2 4 | (cid:12) (cid:12) (cid:12) (cid:12) q (cid:12) (cid:12) Further integrating over in relation (21) we obtain: VT N = Re dΩ dΩ κ(µ) ξ¯(~q ,~µ) q2λ(~q ) A(ǫ)(~q)2 ,q =q˜. (2π)6 µ~ q~ ⊥ ⊥ | | (23) ǫ=±1 Z X Taking into a ount (11) we an rewrite this expression in the following form: 1 dN(ǫ) N = Re dΩ dΩ κ(µ) ξ¯(~q ,~µ) , q =q˜. (2π)2 µ~ q~ ⊥ dΩ (24) ǫ=±1 Z q~ X N A B N Thisrelationforthetotalnumberofevents isrightinanyframeofparti les and . Crossingfrom todi(cid:27)erential q˜ distribution demands (cid:28)xation of frame. If the initial state set in .m.f, then don't depend of the s attering angle. ~µ And in this ase we have for the di(cid:27)erential distribution on : dN± 1 dN± = κ(µ) Re dΩ ξ¯(~q ,~µ) , q =q˜, dΩ (2π)2 q~ ⊥ dΩ (25) µ~ Z q~ where (s+m2 m2 )2 q˜2 = C − D m2 . 4s − C q =q˜ There are everywhere below (rea tion surfa e). µ b Using relations between and 1 µ=(b2q2 )1/2 , dΩ =q2tanh(πµ)d~b , d~µ=µ dµ dϕ, d~b=b db dϕ , µ~ − 4 (26) 5 ~b we get a distribution on . So we have for di(cid:27)erential ross-se tions: dσ± 1 dσ± = κ(µ) Re dΩ ξ¯(~q ,~µ) , dΩ (2π)2 q~ ⊥ dΩ µ~ Z q~ dσ± q2λ(~q ) =(2π)2 ⊥ A(ǫ)(~q)2 , dΩ ~u | | q~ | | qE E (27) q D λ(~q )= , ⊥ q2P0 (~q P~)E q − · E = (~q P~)2+m2 . D − D q Aˆ Sˆ <f S in>=<f in>+iδ(4)(q q )<f Aˆin> f in The matrix element isdσ ±onne ted with -matrix by relation~µ | | | − | | . Now, let us integrate dΩµ~ (27) over the dire tion of ve tor : dσ± 1 q q dσ± dµ = 2π µth(πµ)κ(µ)Z dΩq~( q2−q⊥2 P−12+iµ( q2−q⊥2 )dΩq~) . (28) p p Here we used an integral representation of one fun tion [5℄: 2π dϕ (u u2 1cos(ϕ θ))−1/2+iµ =2πP (u ) . 0− 0− − −1/2+iµ 0 (29) Z0 q ~µ Subsequent transformationof di(cid:27)erential ross-se tionon onne t with turning to hyperboli variables: q ~q u=(u ,u ,u ) , u = , ~u= ⊥ , u2 =u2 u2 u2 =1 0 1 2 0 q2 q2 q2 q2 0− 1− 2 (30) − ⊥ − ⊥ p p In this variables the di(cid:27)erential volume is: d~q d~u du dϕ ⊥ 0 dΩ = = = q~ q q2 q2 u3 u2 (31) − ⊥ 0 0 ϕ ~q p ⊥ where is the azimuth angle of ve tor . dσ± ϕ Taking into a ount that the di(cid:27)erential ross-se tion dΩq~ does not depend on we obtain: ∞ dσ± du dσ± 0 dµ =µtanh(πµ)κ(µ)Z u0 P−12+iµ(u0)(cid:18)dΩq~(cid:19) , (32) 1 u 0 where the angular part of the ross-se tionin the right part of integral is expressed through the variable . Finally µ θ ϕ we represent the di(cid:27)erential ross-se tionon through the di(cid:27)erential ross-se tionon s atteringangle. Let and ~q be axial and azimuth angles of the momentum . Let us turn to integrating over this angles in the expression (28). f(~q) For this we noti e that for arbitrary fun tion the following integral relation is right: f(~q) d~q = q2dq dΩ f(~q)= q2dq dΩ f(~q ,ǫ q2 q2) , q~ ⊥ − ⊥ (33) Z Z ǫX=±1Z q 1 dΩ=sinθdθdϕ , dΩ = dq~ . q~ ⊥ q q2 q2 − ⊥ p From this follows that: dΩ f(~q)= dΩ f(~q ,ǫ q2 q2) , q~ ⊥ − ⊥ (34) Z ǫX=±1Z q 6 θ ϕ or in terms of and angles 1 2π dΩ f(~q ,q =+ q2 q2)= dz dϕf(~q ,q =qz) , q~ ⊥ 3 − ⊥ ⊥ 3 Z q Z0 Z0 0 2π (35) dΩ f(~q ,q = q2 q2)= dz dϕf(~q ,q =qz) , q~ ⊥ 3 − − ⊥ ⊥ 3 Z q −Z1 Z0 z =cosθ , f(~q ,q =qz) f(~q) . ⊥ 3 ≡ So relations between variables are + q2 q2 , qz = − ⊥ forward half-sphere , q⊥ =q 1 z2 . (−pq2−q⊥2 ba kward half-sphere. p − p We turn to integrating over angles in the integral (28). We obtain: 1 dσ+ 1 dz 1 dσ = µtanh(πµ)κ(µ) P ( ) , dµ 2π z −1/2+iµ z dz Z 0 0 (36) dσ− 1 dz 1 dσ = µtanh(πµ)κ(µ) P ( ) . dµ 2π z −1/2+iµ z dz −Z1 | | | | dσ C A+B C+D where dz isthedi(cid:27)erential ross-se tiononthe osineofs atteringangleofparti le inthe → pro ess. dσ± ϕ Here is taken into a ount that dΩq~ do not depend of variable , therefore dσ± 1 dσ = . dΩ 2π dz q~ Unifying relations (22) , ( 27) , ( 36) and taking into a ount that: 1 κ(µ)ξ¯(~q ,~µ)dΩ =1 , (2π)2 ⊥ µ~ Z σ(AB CD) we obtain the norm of the di(cid:27)erential ross-se tionon the total ross-se tion → ∞ 1 dσ(ǫ) dσ N dµ= dz = =σ(AB CD) . dµ dz TVn n ~u → (37) ǫX=±1Z0 (cid:18) (cid:19) −Z1 (cid:18) (cid:19) 1 2| | dσ± dσ± As follows from (27), in ontrast to dΩq~ the di(cid:27)erential ross-se tion dΩµ~ is not positively sign determined on all µ dσ± interval. Contribution of negative value area of dΩµ~ redu es e(cid:27)e tively to de reasing of the total event number of C C parti le reation. So, this spatial area we an interpret as area where taking pla e an absorption of parti les . µ But the total number of asymptoti states with de(cid:28)ne regulates by the relation (37). dσ APPLICATION TO SIMPLE MODELS dΩ IN C.M.F. t A+B A+B Asanexamplewedis ussanone-parti leex hangein - hannel,forelasti → s attering. Corresponding u 0 ross se tion as fun tion of has a polar view: dσ α2 α2N 1 α2N u2 = N = 0 = 0 0 , dΩ 0(t M2)2 (2q2)2(z z)2 (2z q2)2(u ε )2 (38) − 0− 0 0− z0 7 25 €€€€€€€€€€e€€x€€€p€€€@€€Π€€€€€b€€€€q€€€€€€D€€€€€€€€€€€€€€d€€€Σ€€€€€-€€€€ qΣ- HAB®CDL db 20 15 II 10 R III 0 I 5 bq R1 0.5 1 1.5 2 2.5 -5 a. b. b bq<1/2 F1/I2G<. 1b:qa.)D√is2tribution fun tionon in theCmobdqe&l o√f2one parti le ex hange. C(cid:21) area forbidden byun ertaintyr~belation, (cid:21) area of reation parti les , (cid:21) area of absorption parti les . b)The zone stru ture of plain in the C model ofone parti leex hange. ZoneI(cid:21) area forbidden byun ertaintyrelation, zone II (cid:21)area of reation parti les ,zone III C (cid:21) area of absorption parti les . z0 =1.001 here 2M2s M2 z = 1+ = 1+ , 0 λ(s,m2,m2) 2q2 A B M λ(x,y,z) = (x2+y2+z2 2xy 2xy 2yz α (cid:21) massof ex hange parti le, − − − )(cid:21) wellknown the triangle fun tion, (cid:21) the oupling onstant, q2λ˜(~q ) (s2 (m2 m2)2)2 N = (2π)2 ⊥ = (2π)2 − 1− 2 . 0 ~u 16s3 | | σ± In this ase for the ross-se tion we obtain: α2N 2π σ± = 0 , (2q2)2z (z 1) (39) 0 0 ∓ where 1 dσ dz , ε = 1 ∞ dz dσ(ǫ)  0 σ(ε) = dµ= R (cid:0) (cid:1) . Z0 (cid:18) dµ (cid:19)  0 dσ dz , ε = 1 (40) dz − −1  R (cid:0) (cid:1) The integral(32) with su h rossse tion is omputed analyti ally. The normalizedistribution on nearestapproa h parameter takes a view: 1 dσε q2btanh(πµ)κ(µ)z ε ε ε ε = 0− P − + P1 − , σε db 2 cosh(µπ) z0 " iµ−1/2(cid:16)z0 (cid:17) z02−1 iµ−1/2(cid:16)z0 (cid:17)# (41) p ε = 1 P1 (x) where ± , and iµ−1/2 (cid:21) asso iated ones fun tion. The plot of (41) is shown on Fig.1a. z >1 [ 1,1] 0 Sin e sothe argumentof onesfun tions belong to segment − . The onesfun tionispositivewith su h m > 0 ε = 1 argument (and asso iated ones fun tions with too). So the ross-se tion is positive de(cid:28)ned on . On ε= 1 ~b R R R 0 1 2 − Rth2e=-~p2la/n4eq2divides into zones with radiuses , and Fig.1b. Here 0 de(cid:28)nesaborderofforbidden area,where Geizenbergun ertainty relationis broken(phasespa e C R < b < R C b > R 0 1 1 of parti le is less then allowable). Area de(cid:28)nes spatial area of parti le reation. And area is area where abIs(bo)rptio1n of partRi les<isbt<akRen pla e relating to equalibty>(R37). At that, if 1w0e−s5ymboli ally take density 0 1 1 of distribution ∼ in area , when density in area would be ∼ . It is made onditional 8 I(b) R 1/q I(b) exp( πbq) upon that exponential de rease of in the ba kward sphere determines by radius ∼ i.e. ∼ − bq 1 at ≫ . R M2 The left border of 2-zone is de(cid:28)ned by zero of expression (41). In the area of small values of parameter s the ross-se tion(41) turn into zero on √7 2 2 2M2s M2 µ = µ = +2 ǫ+ ǫ2+O(ǫ3) , ǫ = . 0 2 √7 21√7 λ(s,m2,m2) ∼ s 1 2 M2 1 In the area s ≪ the ross-se tiontakes a view: 1 dσ− tanh(πµ)κ(µ) 7 4µ2 M2 = q2b − +O( ) , σ− db cosh(µπ) " 8 s # (42) 1 dσ+ tanh(πµ)κ(µ) cosh(µπ) M2 = q2b +O( ) . σ+ db cosh(µπ) " π s # (43) <b2> CONNECTION BETWEEN AND THE CROSS-SECTION ON TRANSVERSE MOMENTUM OF C A B PARTICLE IN C.M.F OF AND PARTICLES <b2 > Let us al ulate the an averagevalue of nearest approa hparameter square ± . We have by de(cid:28)nition: 1 ∞ dσ± <µ2 > = µ2 dµ , ± σ± dµ (44) Z0 σ± where was de(cid:28)ned in (40). So: 1 1 <b2 > = <µ2 >+ , q = q˜. ± q2 ± 4 (45) (cid:16) (cid:17) dσ± Substituting the representation for dµ from (32), into (44) and taking into a ount that ( ompare with (22) and (29)): ∞ dx κ(µ) = 2π P (x) , iµ−1/2 x Z1 we obtain 2π 1 dσ±dxdu <b2 > = (µ2+ )P (x)P (u ) 0dΩ . ± q˜2σ± 4 iµ−1/2 iµ−1/2 0 dΩ x u µ (46) Z 0 P (u ) u iµ−1/2 0 0 Thedi(cid:27)erentialequationon onesfun tions withargument anberepresentedinfollowingform[5℄: 1 d2 d (µ2+ )P (u ) = (u2 1) 2u P (u ) . 4 iµ−1/2 0 − 0− du2 − 0du iµ−1/2 0 0 0 (cid:16) (cid:17) The left part of this expressionwent asunderintegral fa torinto relation (46) and its substitution allowsus integrate µ over . From the ompleteness relation of ones fun tions follow [2℄: ∞ P x P u dΩ = δ(x u ) . iµ−1/2 iµ−1/2 0 µ 0 − (47) Z0 (cid:0) (cid:1) (cid:0) (cid:1) x Next, we an integrate overvariable . After some transformations we obtain: 2π 2 dσ±du <b2 > = 0 . ± q˜2σ± Z u30 dΩ u0 (48) 9 u θ 0 Crossing in this relation from the variable to the s attering angle , we obtain: 2 1 dσ+ cos2θ dcosθ , ε = 1 q2σ+ dcosθ <b2ε > =  2 Z00cos2θ dσ− dcosθ , ε = 1 . (49) q2σ− dcosθ − Z−1  So, (cid:28)nally we have: 8 s <b2 > = <cos2θ > . ± λ(s,m2,m2 ) ± (50) C D where 1 1 dσ z2 dz , ε = 1 σ+ dz <cos2θε > =  1 Z00 dσ , z = cosθ ,  z2 dz , ε = 1 σ− dz − Z−1 <b2 >  and ± is de(cid:28)ned by relation (44). It follows: 1 <µ2 > = 2<cos2θ > . ± ± −4 (51) µ µ2 >0 The parameter is real number, so . From it and (51) follows an important physi al inequality: 1 <cos2θ > > . ± 8 (52) µ = b2q2/~2 1/4 ~ Let us dis uss the naturbe2of this inequality. It follows from the realitSyOo(f2p,a1r)ameter − , where (cid:21) Plank onstant. Here is an eigen valueb2oqf2K>az~im2/i4r's operator on -group[2℄. Sppe trumµof this operator in Hilbert spa e of states satis(cid:28)es ondition , and that is provide a reality of parameter . By itself this C inequality has an quantum nature and show us the fa t that parti le an not reates in phase spa e less when it allows by Geizenberg's un ertainty relation. <b2 > <cosθ2 > A+B C+D We noti e on the fa t that relation (50) between ± and ± right for any pro ess → in A B enter of mass frame and parti les. In the model with one-parti le ex hange (38) it is easy to obtain that z 1 <cos2θ > = 2z2(z 1)ln 0∓ z +2z2 . ± ± 0 0∓ z ∓ 0 0 0 (cid:16) (cid:17) So it follows: 1 z 1 <b2 > = 4z2(z 1)ln 0∓ 2z +4z2 . ± q2"± 0 0∓ z0 ∓ 0 0# (cid:16) (cid:17) z =1+M2/2q2 0 Let us analyzethis expressionsasfun tions of parameter (relation (38)). The analyzeshows that <cos2θ > ± hanges in borders: 1 < <cos2θ > 6 1 , + 3 1 0.23 . <cos2θ > < , − 3 z 1 0 when hanges in interval from to ∞. 10 ~b DIFFERENTIAL CROSS SECTION ON NEAREST APPROACH PARAMETER IN L.F. B C As itwasnotein the previousse tion, in thelaborframeof parti leenergyandmomentumof parti le depend q = q˜ µ of s attering angle (13). Consequen e of this fa t is appearan e on the rea tion plane as the parameter b SO (2,1) µ dependen e from the s atteringangle, if we use relation (26) for the transitionto the parameter . algebra µ implements on basis fun tions, for whi h the parameter is natural variable. Completeness and orthogonality of µ basis aredσappeared in terms of it. If we take in relation (24) as an independent parameter, then di(cid:27)erential ross se tion dµ is de(cid:28)ned unambiguously and doesn't depend of frame. But at the same time the physi al meaning of (b,q ) µ b ⊥ this parameter isn't lear, only as phase spa e measure . In .m.f. transition in the integral (24) from to µ b does not hange anything onsiderably, and di(cid:27)erential distributions on and on are~bequivalent. But in l.f. the di(cid:27)erentialdistribution hangesradi ally. Letus rossin theintegral(24)tothevariable usingrelations(26). Than we have: 1 dN(ǫ) N = Re d~b dΩ ϑ[b R (q˜)]q2tanh(πµ) κ(µ) ξ¯(~q ,~µ) , (2π)2 q~ − 0 ⊥ dΩ (53) ǫ=±1 Z Z q~ X here 1 ~ µ=(b2q2 )1/2 , R (q˜)= , ϑ(x) , q =q˜, 0 − 4 2q˜ −dis ontinuous fun tion q˜=p C and de(cid:28)nes in (13) ~b From this it follows for the di(cid:27)erential ross se tion on : dσ(ǫ) 1 dσ(ǫ) = Re dΩ ϑ[b R (q˜)]q2th(πµ) κ(µ) ξ¯(~q ,~µ) . d~b (2π)2 ǫ=±1Z q~ − 0 ⊥ dΩq~ (54) X ~b θ ϕ ~q ⊥ Integrating left and right part over the dire tion of ve tor and rossing to angle variables and of ve tor we obtain the result, whi h is analogous to relations (36): 1 dσ+ b dz 1 dσ = ϑ[b R (q˜)]q2tanh(πµ) κ(µ) P ( ) , db 2π z − 0 −1/2+iµ z dz Z 0 0 (55) dσ− b dz 1 dσ = ϑ[b R (q˜)]q2tanh(πµ) κ(µ) P ( ) . db 2π z − 0 −1/2+iµ z dz −Z1 | | | | b From omparison of (55) and (36) it follows that di(cid:27)eren es between distributions on the parameter in .m.f. and C s t in l.f. generates by di(cid:27)eren e of the dependen e of parti le momentum from kinemati variables and for this q˜= p C two ases. From the expli it expression (36) it follows that it is a (cid:29)uent fun tion of angle and with ertain q˜ a ura yit ispossible rossfrom to somemidvalue in integrals(55). Forexample, we re eivethat on the ba kward semisphere: q˜(z) q˜(z¯) , z =cos(θ) , z¯= 0.5 , ≃ − q˜(z) q˜(z¯) and it isn't depend on angle. Then the distribution (55) oin ides with the distribution (36) at ≃ . More C detailed stru ture of parti le reation area re(cid:29)e ts in a generalized distribution fun tion: d2σ b 1 1 dσ = ϑ[b R (q˜)]q2tanh(πµ) κ(µ) P ( ) , 1<z <1 , db dz 2π · − 0 z −1/2+iµ z dz − (56) | | | | 1 q =q˜=p (z) , µ=(b2q2 )1/2 . C − 4 z dσ b It gives us a tomographi pi ture of partial integrals over to the spatial distribution db in the whole interval of . q ⊥ It is similar to Wigner fun tion [6℄ From it we an get expressions for the di(cid:27)erential ross se tion on (11), for b di(cid:27)erential ross se tion on (36, 55) and norm relations (37).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.