ebook img

Sound and Complete Bidirectional Typechecking for Higher-Rank Polymorphism with Existentials and Indexed Types PDF

2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sound and Complete Bidirectional Typechecking for Higher-Rank Polymorphism with Existentials and Indexed Types

Sound and Complete Bidirectional Typechecking for Higher- Rank Polymorphism with Existentials and Indexed Types JoshuaDunfield NeelakantanR.Krishnaswami UniversityofBritishColumbia UniversityofBirmingham Vancouver,Canada Birmingham,England 6 1 0 2 Abstract Since we relied on equality information to omit the nil case, n Bidirectionaltypechecking,inwhichtermseithersynthesizeatype it seems reasonable to look to logical accounts of equality. In a or are checked against a known type, has become popular for its proof theory, it is possible to formulate equality in (at least) two J differentways.Thebetter-knownistheidentitytypeofMartin-Löf, scalability,itserrorreporting,anditseaseofimplementation.Fol- butGADTsactuallycorrespondbesttotheequalityofSchroeder- 9 lowingprinciplesfromprooftheory,bidirectionaltypingcanbeap- Heister (1994) and Girard (1992). The Girard–Schroeder-Heister 1 pliedtomanytypeconstructs.Theprinciplesunderlyingabidirec- (GSH)approachintroducesequalityviathereflexivityprinciple: tionalapproachtoindexedtypes(generalizedalgebraicdatatypes) ] are less clear. Building on proof-theoretic treatments of equality, L Γ ⊢ t=t we give a declarative specification of typing based on focaliza- P tion. Thisapproach permitsdeclarative rulesfor coverage of pat- TheGSHeliminationrulewasoriginallyformulatedinasequent . tern matching, as well as support for first-class existential types calculusstyle,asfollows: s c usingafocalizedsubtypingjudgment.Weuserefinementtypesto forallθ.ifθ∈csu(s,t)thenθ(Γ)⊢ θ(C) [ avoidexplicitlypassingequalityproofsinourtermsyntax,making our calculus close to languages such as Haskell and OCaml. An Γ,(s=t)⊢ C 1 explicit rule deduces when atype isprincipal, leading toreliable Here,wewritecsu(s,t)foracompletesetofunifiersofsandt.So v substitutionprinciplesforarichtypesystemwithsignificanttype therulesaysthatwecaneliminateanequalitys = tif,forevery 6 inference.Wealsogiveasetofalgorithmictypingrules,andprove substitution θ that makes the terms s and t equal, we can give a 0 thatitissoundandcompletewithrespecttothedeclarativesystem. proofofthegoalC. 1 The proof requires a number of technical innovations, including Thisrulehasthreeimportant features, twogood andone bad. 5 provingsoundnessandcompletenessinamutually-recursivefash- First,theruleisan invertibleleft rule(the conclusion of therule 0 ion. implies the premise, and it decomposes the assumptions to the . 1 left of the turnstile), which is known to correspond to a pattern 0 matching rule (Krishnaswami 2009). This aligns with the use of 1. Introduction 6 GADTsinprogramminglanguageslikeHaskellandOCaml,which 1 Consider a list type Vec with a numeric index representing its indeedusepatternmatchingtopropagateequalityinformation. : length,writteninHaskell-likenotationasfollows: Second,whentherearenounifiers,therearenopremises:ifwe v assumeaninconsistentequation,wecanimmediatelyconcludethe Xi data Vec : Nat -> * -> * where goal.Specializingtheruleabovetotheequality0=1,weget: [] : A -> Vec 0 A r (::) : A -> Vec n A -> Vec (succ n) A Γ,(0=1)⊢ C a Wecanusethisdefinitiontowriteaheadfunctionthatalwaysgives Together, these two features line up nicely with our definition of usanelementoftypeAwhenthelengthisatleastone: head,wheretheimpossibilityofthecasefor[]wasindicatedby theabsenceofapatternclause.SotheuseofequalityinGADTs head:∀n,A.(Vecsucc(n)A)→A correspondsperfectlywiththeGirard–Schroeder-Heisterequality. head(x::xs)=x Alas,wecannotsimplygiveaprooftermassignmentforfirst- order logic and call it a day. The third important feature of the Thisclausaldefinitionomitstheclausefor[],whichhasanindex GSHequalityruleisitsuseofunification:itworksbytreatingthe of0.Thetypeannotationtellsusthathead’sargumenthasanindex free variables of the two terms as unification variables. But type ofsucc(n)forsomen.Sincethereisnonaturalnumber nsuch inference algorithms also use unification, introducing unification that0=succ(n),thenilcasecannotoccurandcanbeomitted. variables to stand for unknown types. So we need to understand Thisisanentirelyreasonableexplanationforprogrammers,but how to integrate these two uses of unification, or at least how to language designers and implementors will have more questions. keepthemdecentlyapart,inordertotakethislogicalspecification First, how can we implement such a type system? Clearly we andimplementtypeinferenceforit. neededsomeequalityreasoningtojustifyleavingoffthenilcase, This problem—formulating indexed types in a logical style, which is not trivial in general. Second, designers of functional while retaining the ability to do type inference for them—is the languages are accustomed to the benefits of the Curry–Howard subjectofthispaper. correspondence, and expect a logical reading of type systems to accompanytheoperationalreading.Sowhatisthelogicalreading Contributions. The equivalence of GADTs to the combination ofGADTs? ofexistential typesandequalityconstraintshaslongbeen known 1 2016/1/21 (Xietal.2003).OurfundamentalcontributionistoreduceGADTs return type constraints. These two features lead to all the key tostandardlogicalingredients,whileretainingtheimplementability difficultiesintypecheckingforGADTs. of the type system. We accomplish this by formulating a system ofindexedtypesinabidirectionalstyle(combiningtypesynthesis Universal,existentials,andtypeinference. Practicaltypedfunc- with checking against a known type), which combines practical tionallanguagesmustsupportsomedegreeoftypeinference,most implementabilitywiththeoreticaltidiness. critically the inference of type arguments. That is, if we have a function fof type ∀a.a→a, and wewant toapply itto thear- • Our language supports implicithigher-rankpolymorphism (in gument 3, then we want to write f 3, and not f [Nat] 3 (as we whichquantifiers canbenested under arrows) including exis- would in pure System F). Even with a single type argument, the tentialtypes.Whilealgorithmsforhigher-rankuniversalpoly- latterstyleisnoisy,andprogramsusingevenmoderateamountsof morphismarewell-known(PeytonJonesetal.2007;Dunfield polymorphismrapidlybecomeunreadable. andKrishnaswami2013), ourapproach tosupportingexisten- However,omittingtypeargumentshassignificantmetatheoret- tialtypesisnovel. ical implications. In particular, it forces us to include subtyping in our typing rules, so that (for instance) the polymorphic type Our system goes beyond the standard practice of tying exis- ∀a.a→aisasubtypeofitsinstantiations(likeNat→Nat). tentials to datatype declarations (Läufer and Odersky 1994), Forthesubtyperelationinducedbypolymorphism,subtypeen- infavourofafirst-classtreatmentofimplicitexistentialtypes. tailmentisdecidable(undermodestrestrictions).Mattersgetmore This approach has historically been thought difficult, because complicatedwhenexistentialtypesareadded.Existentialsarenec- theunrestrictedcombinationofuniversalandexistentialquan- essarytoencodeequalityconstraintsinGADTs,butthenaivecom- tificationseems to require mixed-prefix unification (i.e.,solv- binationofexistentialanduniversaltypesrequiresunificationun- ingequationsunderalternatingquantifiers).Weusetheproof- der a mixed prefix of alternating quantifiers (Miller 1992), which theoretictechniqueoffocusingtogiveanovelpolarizedsubtyp- is undecidable. Thus, programming languages traditionally have ingjudgment,whichletsustreatalternatingquantifiersinaway stringentlyrestrictedtheuseofexistentialtypes.Theytieexisten- thatretainsdecidabilitywhilemaintainingessential subtyping tial introduction and elimination to datatype declarations, so that properties,suchasstabilityundersubstitutionandtransitivity. thereisalwaysasyntacticmarkerforwhentointroduceorelimi- • OurlanguageincludesequalitytypesinthestyleofGirardand nateexistentialtypes.Thispermitsleavingexistentialsoutofsub- Schroeder-Heister, but without an explicit introduction form. typingaltogether,atthepriceofnolongerpermittingimplicitsub- for equality. Instead, we treat equalities as property types, in typing(suchasusingλx.x+1attype∃a.a→a). the style of intersection or refinement types: we do not write While thisis apractical solution, it increases thedistance be- explicit equality proofs in our syntax, permitting us to more tweensurfacelanguagesandtheirtype-theoreticcores.Ourgoalis closelymodelhowequalitiesareusedinOCamlandHaskell. togiveadirecttype-theoreticaccountofthefeaturesofoursurface • Ourcalculusincludesnestedpatternmatching,whichfitsneatly languages,avoidingcomplexelaborationpasses.Thekeyproblem inthebidirectional framework, andallowsaformalspecifica- inmixed-prefixunificationisthattheorderinwhichtoinstantiate tionofcoveragecheckingwithGADTs. quantifiersisunclear.WhendecidingΓ ⊢ ∀a.A(a) ≤ ∃b.B(b), we have the choice to choose an instantiation for a or for b, so • Ourdeclarativesystemtrackswhetherornotaderivationhasa that we prove the subtype entailment Γ ⊢ A(t) ≤ ∃b.B(b) or principal type. The system includes an unusual “higher-order thesubtypeentailmentΓ ⊢ ∀a.A(a) ≤ B(t).Analgorithmwill principality” rule, which says that if only a single type can introduceaunificationvariablefor aandthenforb,or theother be synthesized for a term, then that type is principal. While wayaround—andthischoicematters!Withthefirstorder,bmay this style of hypothetical reasoning is natural to explain to dependona,butnotviceversa;withthesecondorder,theallowed programmers,itisalsoextremelynon-algorithmic. dependenciesarereversed.Accuratedependencytrackingamounts • We formulate an algorithmic type system (Section 5) for our toSkolemization,whichmeanswehavea“reduction”totheunde- declarativecalculus,andprovethattypecheckingisdecidable, cidableproblemofhigher-orderunification. deterministic(5.3),andsoundandcomplete(Sections6–7)with We adopt an idea from polarized type theory. In the language respecttothedeclarativesystem. ofpolarization,universalsareanegativetype,andexistentialsare a positive type. So we introduce two mutually-recursive subtype Ouralgorithmicsystem(and,toalesserextent,ourdeclarative relations: Γ ⊢ A ≤+ B for positive types and Γ ⊢ A ≤− B system) uses some techniques developed by Dunfield and Krish- fornegativetypes.Thepositivesubtyperelationonlydeconstructs naswami(2013),butweextendthesetoafarrichertypelanguage existentials, and the negative subtype relation only deconstructs (existentials, indexed types, sums, products, equations over type universals.Thisfixestheorderinwhichquantifiersareinstantiated, variables),andwedifferbysupportingpatternmatching,polarized makingtheproblemdecidable(infact,ratherstraightforward). subtyping,andprincipalitytracking. The price we pay is that fewer subtype entailments are deriv- able. Fortunately, all such entailments can be recovered by η- Appendixandproofs. Theappendixhasfiguresdefiningallthe expansions.Moreover,thelostsubtypeentailmentsseemtoallrely judgments, including some omitted here for space reasons. Full on“clever” quantifier reversals(which arerareinprogramming). proofsareavailablefrom: Sowekeepfundamentalexpressivity,yetgaindecidability. github.com/joshuadunfield/lics39/raw/master/lics39_proofs.pdf Equality as a property. The usual convention in Haskell and OCamlistomakeequalityproofsinGADTdefinitionsimplicit.We wouldliketomodelthisfeaturedirectly,sothatourcalculusstays 2. Overview closetosurfacelanguages, withoutsacrificingthelogicalreading To orient the reader, we give an overview and rationale of the ofthesystem.Inthiscase,theappropriatelogicalconceptscome novelties in our type system, before getting into the details of fromthe theory of intersection types. A typing judgment such as the typing rules and algorithm. As is well-known (Cheney and e:A×Bcanbeviewedasgivinginstructionsonhowtoconstruct Hinze 2003; Xi et al. 2003), GADTs can be desugared into type a value (pair an A with a B). But types can also be viewed as expressions that use equality and existential types to express the properties, where e : X is read “e has property X”. To model 2 2016/1/21 GADTsaccurately,wetreatequationst=t′usingapropertytype Expressions e ::= x|()|λx.e|es+ |recx.v|(e:A) constructor A ∧ P, read “A with P”, to model elements of type |he1,e2i|inj1e|inj2e|case(e,Π) Asatisfyingtheproperty(equation)P.WealsointroduceP ⊃ A, |[]|e1 ::e2 read “P implies A”, for its adjoint dual. Then, standard rules for Values v ::= x|()|λx.e|recx.v|(v:A) property types, whichomit explicit proof terms,can explainwhy |hv ,v i|inj v|inj v|[]|v ::v 1 2 1 2 1 2 OCamlandHaskelldonotrequireexplicitequalityproofs. Spines s ::= ·|es Handling equality constraints through intersection types also Nonemptyspines s+ ::= es meansthatcertainrestrictionsontypingthatareusefulfordecid- Patterns ρ ::= x|hρ ,ρ i|inj ρ|inj ρ|[]|ρ ::ρ ability,suchasrestrictingpropertyintroductiontovalues,arisenat- 1 2 1 2 1 2 Branches π ::= ~ρ⇒e urally from the semantic point of view—via the value restriction neededforsoundlymodelingintersectionanduniontypes(Davies Branchlists Π ::= ·| π||Π andPfenning2000;DunfieldandPfenning2003). Figu(cid:0)re1. (cid:1)Sourcesyntax Bidirectionality,patternmatching,andprincipality. Something thatisnot,byitself,novelinourapproachisourdecisiontoformu- Mappingoverlists. First,webeginwiththetraditionalmapfunc- lateboththedeclarativeandalgorithmicsystemsinabidirectional tion,whichtakesafunctionandappliesittoeveryelementofalist. style.Bidirectionalchecking(PierceandTurner2000)isapopular implementationchoiceforsystemsrangingfromdependent types recmap.λf.λxs.case xs, []⇒[] (Coquand 1996; Abel et al. 2008) and contextual types (Pientka ||y::ys⇒(fy)::mapfys 2008)toobject-orientedlanguages(Oderskyetal.2001),butalso :∀n:N.∀α:⋆.∀β:⋆(cid:0).(α→β)→Vecnα→Vecnβ has good proof-theoretic foundations (Watkinset al. 2004), mak- (cid:1) This code is simply a recursive function that case-analyzes its ing it useful both for specifying and implementing type systems. Bidirectionalapproachesmakeitcleartoprogrammerswherean- secondargumentxs.Givenanemptyxs,itreturnstheemptylist; notationsareneeded(whichisgoodforspecification),andcanalso givenaconscelly :: ys,itappliestheargumentfunctionftothe removeunneedednondeterminismfromtyping(whichisgoodfor headyandmakingarecursivecallonthetailys. Inaddition,weannotatethedefinitionwithatype.Wehavetwo bothimplementationandprovingitscorrectness). However,itisworthhighlightingthatbecausebothbidirection- type parameters α and β for the input and output element types. Since we are working with length-indexed lists, we also have a alityand pattern matching arise fromfocalization, these twofea- turesfittogetherextremelywell.Infact,byfollowingtheblueprint length index parameter n, which lets us show by typing that the inputandoutputtomaphavethesamelength. of focalization-based pattern matching, we can give a coverage- Inoursystem,thistypeannotationismandatory.Fulltypeinfer- checking algorithm that explains when it is permissible to omit encefordefinitionsusingGADTsrequirespolymorphicrecursion, clausesinGADTpatternmatching. whichisundecidable.Asaresult,thisexamplealsorequiresanno- Inthepropositionalcase,thetypesynthesisjudgmentofabidi- tationinOCamlandGHCHaskell.However,HaskellandOCaml rectional type system generates principal types: if a type can be inferpolymorphictypeswhennopolymorphicrecursionisneeded. inferredforaterm,thattypeisunique.Thispropertyislostonce Weadoptthesimplerrulethatallpolymorphicdefinitionsarean- quantifiers are introduced into the system, which is why it is not notated.ThischoiceismotivatedbyVytiniotisetal.(2010), who much remarked upon. However, prior work on GADTs, starting analyzedalargecorpusofHaskell codeandshowedthatimplicit withSimonetandPottier(2007),hasemphasizedtheimportanceof let-generalization was rarely used: programmers tend to annotate thefactthathandlingequalityconstraintsismucheasierwhenthe polymorphicdefinitionsfordocumentationpurposes. typeofascrutineeisprincipal.Essentially,thisensuresthatnoex- istentialvariablescanappearinequations,whichpreventsequation NestedpatternsandGADTs. Now,weconsiderthezipfunction, solvingfrominterferingwithunification-basedtypeinference.The whichconvertsapairoflistsintoalistofpairs.InordinaryMLor OutsideInalgorithmtakesthisconsequenceasadefinition,permit- Haskell,wemustconsiderwhattodowhenthetwolistsarenotthe tingnon-principaltypesjustsolongastheydonotchangetheval- samelength.However,withlength-indexedlists,wecanstatically uesofequations.However,Vytiniotisetal.(2011)notethatwhile rejectpassingtwolistsofdifferinglength: theirsystemissound,theynolongerhaveacompletenessresultfor theirtypesystem. reczip.λp.case p, ([],[])⇒[] Weusethisinsighttoextendourbidirectionaltypecheckingal- ||(x::xs,y::ys)⇒(x,y)::zip(xs,ys) gorithmtotrackprincipality:Thejudgmentswegivetrackwhether :∀n:N.∀α:⋆.(cid:0)∀β:⋆.(Vecnα×Vecnβ)→Vecn(α×β) typesareprincipal,andweusethistogivearelativelysimplespeci- (cid:1) ficationforwhetherornottypeannotationsareneeded.Weareable In this case expression, we give only two patterns, one for when togiveaverynaturalspectoprogrammers—casesonGADTsmust bothlistsareemptyandoneforwhenbothlistshaveelements,with scrutinizetermswithprincipaltypes,andaninferredtypeisprinci- thetypeannotationindicatingthatbothlistsmustbeoflengthn. paljustwhenitistheonlytypethatcanbeinferredforthatterm— Typingshowsthatthecaseswhereonelistisemptyandtheother whichsoundlyandcompletelycorrespondstotheimplementation- non-empty areimpossible, soour coverage checking rulesaccept sideconstraints:atypeisprincipalwhenitcontainsnoexistential thisasacompletesetofpatterns.Thisexamplealsoillustratesthat unificationvariables. wesupportnestedpatternmatching. 4. DeclarativeTyping 3. Examples Expressions. Expressions (Figure 1) are variables x; the unit Inthissection,wegivesomeexamplesoftermsfromourlanguage, value();functionsλx.e;applicationstoaspinees+;fixedpoints whichillustratethekeyfeaturesofoursystemandgiveasenseof rec x.v; annotations (e : A); pairs he ,e i; injections into a 1 2 how many typeannotations areneeded inpractice. Tohelpmake sum type inj e; case expressions case(e,Π) where Π is a list of k thispointclearly,alloftheexampleswhichfollowareunsugared: branchesπ,whichcaneliminatepairsandinjections(seebelow); theyaretheactualtermsfromourcorecalculus. theemptyvector[];andconsingaheade toatailvectore . 1 2 3 2016/1/21 Universalvariables α,β,γ favourofthespine,soe e e isparsedastheapplicationofe to 1 2 3 1 Sorts κ ::= ⋆|N thespinee2e3,whichistechnicallye2 (e3 ·).Patternsρ consist Types A,B,C::= 1|A→B|A+B|A×B ofpatternvariables,pairs,andinjections.Abranchπisasequence |α|∀α:κ.A|∃α:κ.A of patterns~ρ with a branch body e. We represent patterns as se- |P⊃A|A∧P|VectA quences,whichenablesustodeconstructtuplepatterns. Terms/monotypes t,τ,σ ::= zero|succ(t)|1|α Types. WewritetypesasA,B andC. Wehavetheunit type1, |τ→σ|τ+σ|τ×σ functions A → B, sums A+B, and products A×B. We have Propositions P,Q ::= t=t′ universalandexistentialtypes∀α : κ.Aand∃α:κ.A;theseare Contexts Ψ ::= ·|Ψ,α:κ |Ψ,x:Ap predicative quantifiers over monotypes (see below). We write α, Polarities ± ::= +|− β,etc.fortypevariables; theseareuniversal,except whenbound Binaryconnectives ⊕ ::= →|+|× withinanexistentialtype.WealsohaveaguardedtypeP⊃A,read Principalities p,q ::= !| 66! “PimpliesA”.ThisimplicationcorrespondstotypeA,providedP |{z} holds.ItsdualistheassertingtypeA∧P,read“AwithP”,which sometimesomitted witnessesthepropositionP.Inboth,Phasnoruntimecontent. Figure2. Syntaxofdeclarativetypesandcontexts Sorts, terms, monotypes, and propositions. Terms and mono- typest,τ,σshareagrammarbutaredistinguishedbytheirsortsκ. Naturalnumberszeroandsucc(t)aretermsandhavesortN.Unit checking,eq.elim. subtyping coverage 1hasthesort⋆ofmonotypes.Avariableαstandsforatermora Ψ/P⊢e Cp Ψ⊢A≤±B Ψ⊢ΠcoversA~ monotype,dependingonthesortκannotatingitsbinder.Functions, sums,andproductsofmonotypesaremonotypesandhavesort⋆. ⇐ Wetendtoprefertfortermsandσ,τformonotypes. spinetyping typechecking match,eq.elim. ApropositionP orQissimplyanequationt = t′.Notethat Ψ⊢s:Ap≫Bq Ψ⊢e Ap Ψ/P⊢Π::A~ Cp terms,whichrepresentruntime-irrelevantinformation,aredistinct fromexpressions;however,anexpressionmayincludetypeanno- ⇐ ⇐ tationsoftheformP⊃AandA∧P,wherePcontainsterms. principality-recovering patternmatching Contexts. AdeclarativecontextΨisanorderedsequenceofuni- spinetyping Ψ⊢Π::A~ Cp versalvariabledeclarationsα : κandexpressionvariabletypings Ψ⊢s:Ap≫B⌈q⌉ x : Ap,wherepdenoteswhetherthetypeAisprincipal(Section ⇐ typesynthesis 4.2).AvariableαcanbefreeinatypeAonlyifαwasdeclaredto Ψ⊢e Bp theleft:α:⋆, x:αpiswell-formed,butx:αp, α:⋆isnot. Figure3. Dependencys⇒tructureofthedeclarativejudgments 4.1 Subtyping We give our two subtyping relations in Figure 4. We treat the universal quantifier as a negative type (since it is a function in Ψ⊢ A≤± B UndercontextΨ,typeAisasubtypeofB, System F), and the existential as a positive type (since it is a decomposingheadconnectivesofpolarity± pair in System F). We have two typing rules for each of these connectives,correspondingtotheleftandrightrulesforuniversals Ψ⊢ Atype nonpos(A) nonneg(A) ≤Refl± andexistentialsinthesequentcalculus.Wetreatallothertypesas ± Ψ⊢ A≤ A havingnopolarity.Thepositiveandnegativesubtypejudgmentsare Ψ⊢ A≤− B nonpos(A) nonpos(B) mutuallyrecursive,andthe≤−+rulepermitsswitchingthepolarity ≤− ofsubtypingfrompositivetonegativewhenbothofthetypesare Ψ⊢ A≤+ B + non-positive,andconverselyfor≤+.Whenbothtypesareneither − Ψ⊢ A≤+ B nonneg(A) nonneg(B) positivenornegative,werequirethemtobeequal(≤Refl). ≤+ In logical terms, functions and guarded types are negative; Ψ⊢ A≤− B − sums, products and assertion types are positive. Wecould poten- tiallyoperate on these types in the negative and positive subtype Ψ⊢ τ:κ Ψ⊢ [τ/α]A≤− B Ψ,β:κ⊢ A≤− B ≤∀L ≤∀R relations,respectively.Leavingout(forexample)functionsubtyp- Ψ⊢ ∀α:κ.A≤− B Ψ⊢ A≤− ∀β:κ.B ingmeans thatwewillhavetodosomeη-expansions toget pro- gramstotypecheck;weomittheserulestokeeptheimplementation Ψ,α:κ⊢ A≤+ B Ψ⊢ τ:κ Ψ⊢ A≤+ [τ/β]B complexitylow.Thisalsoillustratesanicefeatureofbidirectional ≤∃L ≤∃R Ψ⊢ ∃α:κ.A≤+ B Ψ⊢ A≤+ ∃β:κ.B typing:wearerelativelyfreetoadjustthesubtyperelationtotaste. Figure4. Subtypinginthedeclarativesystem 4.2 Typingjudgments Principality. Ourtypingjudgmentscarryprincipalities:A!means thatAisprincipal,andA66! meansAisnotprincipal.Notethata Values v are standard for a call-by-value semantics; the vari- principalityispartofajudgment,notpartofatype.Inthechecking ablesintroducedbyfixedpointsareconsideredvalues,becausewe judgmentΨ ⊢ e ⇐ A pthetypeAisinput;ifp = !,weknow onlyallowfixedpointsofvalues.Aspinesisalistofexpressions— thateisnottheresultofguessing.Forexample,theein(e:A)is argumentstoafunction.Allowingemptyspines(written·)iscon- checkedagainstA!.InthesynthesisjudgmentΨ⊢ e⇒Ap,the venientinthetypingrules,butwouldbestrangeinthesourcesyn- typeA isoutput, and p = ! means itisimpossibletosynthesize tax,so(inthegrammar of expressions e)werequireanonempty anyothertype,asinΨ⊢ (e:A)⇒A!. spines+.Weusuallyomittheemptyspine·,writinge e instead Wesometimesomitaprincipalitywhenitis66!(“notprincipal”). 1 2 ofe e ·.Sinceweusejuxtapositionforbothapplicationes+and Wewritep⊑q,read“patleastasprincipalasq”,forthereflexive 1 2 spines, somestringsareambiguous; weresolvethisambiguityin closureof!⊑66!. 4 2016/1/21 echk-I Expressioneisacheckedintroductionform λx.echk-I ()chk-I he1,e2ichk-I injkechk-I []chk-I e1 ::e2chk-I Figure5. “Checkingintroform” Ψ⊢ e⇐Ap UndercontextΨ,expressionechecksagainstinputtypeA Ψ⊢ Ptrue UndercontextΨ,checkP Ψ⊢ e⇒Ap UndercontextΨ,expressionesynthesizesoutputtypeA DeclCheckpropEq Ψ⊢ s:Ap≫Cq UndercontextΨ, Ψ⊢ (t=t)true passingspinestoafunctionoftypeAsynthesizestypeC; Ψ⊢ s:Ap≫C⌈q⌉ inthe⌈q⌉form,recoverprincipalityinqifpossible x:Ap∈Ψ Ψ⊢ e⇒Aq Ψ⊢ A≤pol(B)B Ψ⊢ Atype Ψ⊢ e⇐A! DeclVar DeclSub DeclAnno Ψ⊢ x⇒Ap Ψ⊢ e⇐Bp Ψ⊢ (e:A)⇒A! vchk-I Ψ,α:κ⊢ v⇐Ap Ψ⊢ τ:κ Ψ⊢ es:[τ/α]A66! ≫Cq Decl1I Decl∀I Decl∀Spine Ψ⊢ ()⇐1p Ψ⊢ v⇐(∀α:κ.A)p Ψ⊢ es:(∀α:κ.A)p≫Cq Ψ⊢ Ptrue Ψ⊢ e⇐Ap vchk-I Ψ/P⊢ v⇐A! Ψ⊢ Ptrue Ψ⊢ es:Ap≫Cq Decl∧I Decl⊃I Decl⊃Spine Ψ⊢ e⇐(A∧P)p Ψ⊢ v⇐(P⊃A)! Ψ⊢ es:(P⊃A)p≫Cq Ψ,x:Ap⊢ v⇐Ap Ψ,x:Ap⊢ e⇐Bp Ψ⊢ e⇒Ap Ψ⊢ s:Ap≫C⌈q⌉ DeclRec Decl I Decl E Ψ⊢ recx.v⇐Ap Ψ⊢ λx.e⇐A→Bp Ψ⊢ es⇒Cq ′ → → forallC . Ψ⊢ s:A!≫C66! if Ψ⊢ s:A!≫C′66! thenC′ =C Ψ⊢ s:Ap≫Cq DeclSpineRecover DeclSpinePass Ψ⊢ s:A!≫C⌈!⌉ Ψ⊢ s:Ap≫C⌈q⌉ Ψ⊢ e⇐Ap Ψ⊢ e⇒A! Ψ⊢ s:Bp≫Cq Ψ⊢ Π::A⇐Cp DeclEmptySpine Decl Spine Ψ⊢ ·:Ap≫Ap Ψ⊢ es:A→Bp≫Cq Ψ⊢ ΠcoversA DeclCase → Ψ⊢ case(e,Π)⇐Cp UndercontextΨ,incorporatepropositionP Ψ/P ⊢ e⇐Cp mgu(σ,τ)=θ andcheckeagainstC mgu(σ,τ)=⊥ θ(Ψ)⊢ θ(e)⇐θ(C)p DeclCheck⊥ DeclCheckUnify Ψ/(σ=τ)⊢ e⇐Cp Ψ/(σ=τ)⊢ e⇐Cp Figure6. Declarativetyping,omittingrulesfor×,+,andVec Spine judgments. The ordinary form of spine judgment, Ψ ⊢ IfsomeC′ 6=C,thenCiscertainlynotprincipal,andwemust s : A p ≫ C q, says that if arguments s are passed to a applyDeclSpinePass,whichsimplytransitionsfromtheordinary function of type A, the function returns type C. For a function judgmenttotherecoveryjudgment. e applied to one argument e , we write e e as syntactic sugar Figure3showsthedependenciesbetweenthedeclarativejudg- 1 1 for e (e ·). Supposing e synthesizes A → A , we apply ments.Giventhecyclecontainingthespinetypingjudgments,we 1 1 2 Decl→Spine,checkinge againstA andusingDeclEmptySpine needtostopandask:IsDeclSpineRecoverwell-founded?Forwell- 1 1 toderiveΨ⊢ ·:A p≫A p. foundedness of type systems, we can often make a straightfor- 2 2 RuleDecl∀Spinedoesnotdecomposee sbutinstantiatesa∀. wardargument that,aswemovefromtheconclusion of aruleto Note that, even if the given type ∀α : κ.A isprincipal (p = !), itspremises, either the expression gets smaller, or the expression thetype[τ/α]Ainthepremiseisnotprincipal—wecouldchoosea staysthesamebutthetypegetssmaller.InDeclSpineRecover,nei- differentτ.Infact,theqinDecl∀Spineisalsoalways66!,becauseno ther the expression nor the type get smaller. Fortunately, the rule rulederivingtheordinaryspinejudgmentcanrecoverprincipality. that gives rise to the arrow from “spine typing” to “type check- The recovery spine judgment Ψ ⊢ s : A p ≫ C ⌈q⌉, ing”inFigure3—Decl→Spine—doesdecomposeitssubject,and however,canrestoreprincipalityinsituationswherethechoiceof anyderivations ofarecoveryjudgment lurkingwithinthesecond τinDecl∀Spinecannot affecttheresulttypeC. IfAisprincipal premiseofDeclSpineRecover mustbeforasmallerspine.Inthe (p = !)buttheordinaryspinejudgmentproducesanon-principal appendix(Lemma??,p.??),weprovethattherecoveryjudgment, C, wecan tryto recover principalitywithDeclSpineRecover. Its andalltheotherdeclarativejudgments,arewell-founded. firstpremiseisΨ⊢ s:A! ≫C66!;itssecondpremise(really,an infinitesetofpremises)quantifiesoverallderivationsofΨ ⊢ s : Example. Appendix A has an example showing how the spine A ! ≫ C′66!.IfC′ = Cinallsuchderivations,thentheordinary typingrulesworktorecoverprincipality. spineruleserredonthesideofcaution:Cisactuallyprincipal,so wecansetq=!intheconclusionofDeclSpineRecover. Subtyping. RuleDeclSubinvokesthesubtypingjudgment,atthe polarityofB,thetypebeingcheckedagainst.ThisallowsDeclSub to play the role of an existential introduction rule, by applying subtypingrule≤∃RwhenBisanexistentialtype. 5 2016/1/21 Patternmatching. RuleDeclCasechecks that thescrutinee has checkequation instantiation a principal type, and then invokes the two main judgments for Γ ⊢t1⊜t2:κ⊣∆ Γ ⊢α^:=t:κ⊣∆ ~ pattern matching. The Ψ ⊢ Π :: A ⇐ C p judgment checks that each branch in the list of branches Π is well-typed, and the ~ equiv.props. equiv.types Ψ ⊢ ΠcoversAjudgmentdoescoveragecheckingforthelistof ~ Γ ⊢P≡Q⊣∆ Γ ⊢A≡B⊣∆ branches.BothofthesejudgmentstakeavectorAofpatterntypes tosimplifythespecificationofcoveragechecking. TheΨ⊢ Π::A~ ⇐Cpjudgment(rulesintheappendix’sFig- checkprop. subtyping coverage ure15)systematicallychecksthecoverageofeachbranchinΠ:rule Γ ⊢Ptrue⊣∆ Γ ⊢A<:±B⊣∆ Γ ⊢ΠcoversA~ DeclMatchEmptysucceedsontheemptylist,andDeclMatchSeq checks one branch and recurs on the remaining branches. Rules spinetyping typechecking equalityelim. forsums,units,andproductsbreakdownpatternslefttoright,one Γ ⊢s:Ap≫Bq⊣∆ Γ ⊢e Ap⊣∆ Γ/s⊜t:κ⊣∆⊥ constructor at a time. Products also extend the sequences of pat- ternsandtypes,withDeclMatch×breakingdownapatternvector ⇐ headedbyapairpatternhp,p′i,~pintop,p′,~p,andbreakingdown ~ ~ principality-recovering patternmatching thetypesequence (A×B),CintoA,B,C.Once allthepatterns spinetyping ~ areeliminated,theDeclMatchBaserulesaysthatifthebodytype- Γ ⊢s:Ap≫B⌈q⌉⊣∆ Γ ⊢Π::A Cp⊣∆ checks,thenthebranchtypechecks.Forcompleteness,thevariable ⇐ and wildcardrules arerestrictedso that any top-level existentials typesynthesis andequationsareeliminatedbeforediscardingthetype. Γ ⊢e Bp⊣∆ TheexistentialeliminationruleDeclMatch∃unpacksanexis- Figure7. Dependencystructu⇒reofthealgorithmicjudgments tentialtype,andDeclMatch∧breaksapartaconjunctionbyelim- inatingtheequalityusingunification.TheDeclMatch⊥rulesays that if the equation is false then the branch always succeeds, be- nately,itwouldbestraightforwardtoaddsuchrules,followingthe causethiscaseisimpossible.TheDeclMatchUnifyruleunifiesthe styleofDunfieldandKrishnaswami(2013). twotermsofanequationandappliesthesubstitutionbeforecon- tinuing to check typing. Together, these two rules implement the 5. AlgorithmicTyping Schroeder-Heisterequalityeliminationrule.Becauseourlanguage of terms has only simple first-order terms, either unification will Our algorithmic rulesclosely mimicour declarative rules, except fail,orthereisamostgeneralunifier. thatwheneveradeclarativerulewouldmakeaguess,thealgorith- ~ TheΨ ⊢ ΠcoversA judgment (intheappendix’s Figure16) micruleaddstothecontextanexistentialvariable(writtenwitha checkswhetherasetofpatternscoversallpossiblecases.Aswith hatα^).Astypecheckingproceeds,weaddsolutionstotheexisten- matchtyping,wesystematicallydeconstructthesequenceoftypes tialvariables,reflectingincreasingknowledge.Hence,eachdeclar- in the branch, but we also need auxiliary operations to expand ative typing judgment has a corresponding algorithmic judgment the patterns. For example, the Π ❀× Π′ operation takes every withanoutputcontextaswellasaninputcontext.Thealgorithmic branch hp,p′i,~ρ ⇒ e and expands it to p,p′,~ρ ⇒ e. To keep typecheckingjudgmentΓ ⊢ e⇐Ap ⊣∆takesaninputcontext the sequence of patterns aligned with the sequence of types, we Γandyieldsanoutputcontext∆thatincludesincreasedknowledge also expand variables and wildcard patterns into two wildcards: aboutwhatthetypeshavetobe.Thenotionofincreasingknowl- x,~ρ ⇒ ebecomes_,_,~ρ ⇒ e.Afterexpandingoutallthepairs, edgeisformalizedbyajudgmentΓ −→∆(Section5.2). DeclCovers×checkscoveragebybreakingdownthepairtype. Figure 7 shows a dependency graph of the algorithmic judg- For sum types, we expand a list of branches into two lists, ments.Eachdeclarativejudgmenthasacorrespondingalgorithmic onefor eachinjection.SoΠ ❀+ Π kΠ willsendallbranches judgment,butthealgorithmicsystemaddsjudgmentssuchastype L R equivalencecheckingΓ ⊢ A ≡ B ⊣ ∆andvariableinstantiation headed by inj p into Π and all branches headed by inj p into 1 L 2 Γ ⊢ α^ := t : κ ⊣ ∆. Declaratively, thesejudgmentscorrespond Π , with variables and wildcards being sent to both sides. Then R to uses of reflexivity axioms; algorithmically, they correspond to DeclCovers+checkstheleftandrightbranchesindependently. solvingexistentialvariablestoequateterms. Aswithtyping,DeclCovers∃justunpackstheexistentialtype. We give the algorithmic typing rules in Figure 11; rules for Likewise, DeclCoversEqBot and DeclCoversEq handle the two mostother judgments areintheappendix. Our styleof specifica- cases arising from equations. If an equation isunsatisfiable, cov- tionbroadlyfollowsDunfieldandKrishnaswami(2013):weadapt erage succeeds since there are no possible values of that type. If theirmechanisms ofvariableinstantiation,context extension,and it is satisfiable, we apply the substitution and continue coverage contextapplication(tobothtypesandothercontexts).Ourversions checking. ofthesemechanisms,however,supportindices,equationsoveruni- These rules do not check for redundancy: DeclCoversEmpty versalvariables,andthe∃/⊃/∧connectives.Wealsodifferinour appliesevenwhenbranchesareleftover.WhenDeclCoversEmpty formulationofspinetyping,andbybeingabletotrackwhichtypes isapplied,wecouldmarkthe· ⇒ e branch,andissueawarning 1 areprincipal.TheexampleinAppendixAshowshowthealgorith- forunmarkedbranches.Thisseemsbetterasawarningthananer- micspinetypingrulesworktorecoverprincipality. ror,sinceredundancyisnotstableundersubstitution.Forexample, acaseover(Vec n A)with[]and::branchesisnotredundant— Syntax. Expressionsarethesameasinthedeclarativesystem. butifwesubstitute0forn,the::branchbecomesredundant. Existential variables. The algorithmic system adds existential variablesα^,β^,γ^totypesandterms/monotypes(Figure8).Weuse Synthesis. Bidirectionaltypingisaformofpartialtypeinference, thesamemeta-variablesA,... foralgorithmictypes.Wewriteu whichPierceandTurner(2000) saidshould“eliminateespecially foreitherauniversalvariableαoranexistentialvariableα^. those type annotations that are both common and silly”. But our rulesareratherparsimoniousinwhattheysynthesize;forinstance, Contexts. An algorithmic context Γ is a sequence that, like a ()doesnotsynthesize1,andsomightneedanannotation.Fortu- declarative context, may contain universal variable declarations 6 2016/1/21 Universalvariables α,β,γ [·]· = · Existentialvariables α^,β^,γ^ [Ω,x:Ap](Γ,x:AΓp) = [Ω]Γ, x:[Ω]Ap if[Ω]A=[Ω]AΓ Variables u ::= α|α^ [Ω,α:κ](Γ,α:κ) = [Ω]Γ, α:κ Types A,B,C::= 1|A→B|A+B|A×B [Ω,◮u](Γ,◮u) = [Ω]Γ |α| α^ |∀α:κ.A|∃α:κ.A [Ω,α=t](Γ,α=t′) = (cid:2)[Ω]t/α(cid:3)[Ω]Γ if[Ω]t=[Ω]t′ |P⊃A|A∧P|VectA [Ω]Γ′whenΓ =(Γ′,α^:κ=t′) Propositions P,Q ::= t=t′ [Ω,α^ :κ=t]Γ = [Ω]Γ′whenΓ =(Γ′,α^:κ) Binaryconnectives ⊕ ::= →|+|× [Ω]Γ otherwise Terms/monotypes t,τ,σ ::= zero|succ(t)|1|α|α^  Figure10. ApplyingacompletecontextΩtoacontext |τ→σ|τ+σ|τ×σ Contexts Γ,∆,Θ ::= ·|Γ,u:κ |Γ,x:Ap |Γ,α^ :κ=τ |Γ,α=t |Γ,◮u for contexts with a hole is useful: Γ = Γ0[Θ] means Γ has the form(Γ ,Θ,Γ ).Forexample,ifΓ = Γ [β^] = (α^,β^,x : β^),then Completecontexts Ω ::= ·|Ω,α:κ|Ω,x:Ap L R 0 |Ω,α^ :κ=τ|Ω,α=t|Ω,◮u Γ0[β^ =α^]=(α^,β^ =α^,x:β^). Possibly-inconsistentcontexts ∆⊥ ::= ∆|⊥ 5.2 ThecontextextensionrelationΓ −→∆ Figure 8. Syntax of types, contexts, and other objects in the A context Γ is extended by a context ∆, written Γ −→ ∆, if ∆ algorithmicsystem has at least as much information as Γ, while conforming to the samedeclarativecontext—thatis,[Ω]Γ = [Ω]∆forsomeΩ.Ina sense,Γ −→∆saysthatΓ isentailedby∆:allpositiveinformation [Γ]τ when(α=τ)∈Γ (cid:2)Γ[α^ :κ=τ](cid:3)α^ = [Γ]τ [Γ]α = derivablefromΓcanalsobederivedfrom∆(whichmayhavemore (cid:12)α otherwise (cid:2)Γ[α^ :κ](cid:3)α^ = α^ information,say,thatα^ isequaltoaparticulartype).Wegivethe [Γ](P⊃A) = ([Γ]P)⊃([Γ]A) [Γ](∀α:κ.A) = ∀α:κ.[Γ]A rulesforextensioninFigure14intheappendix. [Γ](A∧P) = ([Γ]A)∧([Γ]P) [Γ](∃α:κ.A) = ∃α:κ.[Γ]A Extension allows solutions to change, if information is pre- [[ΓΓ]]((VAe⊕ctBA)) == V([Γec]A()[Γ⊕]t)([(Γ[Γ]B]A)) [Γ](t1=t2) = ([Γ]t1)=([Γ]t2) servedorincreased:(α^ :⋆,β^ :⋆=α^)−→(α^ :⋆=1,β^ :⋆=α^) directlyincreasesinformationaboutα^,andindirectlyincreasesin- Figure9. Applyingacontext,asasubstitution,toatype formationaboutβ^.Moreinterestingly,if∆=(α^:⋆=1,β^:⋆=α^) andΩ = (α^:⋆ = 1,β^:⋆ = 1),then∆ −→ Ω:whilethesolution ofβ^inΩisdifferent,inthesensethatΩcontainsβ^ :⋆=1while α:κandexpressionvariabletypingsx:Ap.However,itmayalso ∆containsβ^ :⋆ = α^,applyingΩtothesolutionsgivesthesame have(1)unsolvedexistentialvariabledeclarationsα^ : κ(included result:[Ω]α^ =[Ω]1=1,whichisthesameas[Ω]1=1. intheΓ,u : κproduction);(2)solved existentialvariabledeclara- Extension is quite rigid, however, in two senses. First, if a tionsα^ :κ=τ;(3)equationsoveruniversalvariablesα=τ;and declarationappearsinΓ,itappearsinallextensionsofΓ.Second, (4)markers◮u. extension preserves order. For example, if β^ is declared after α^ An equation α = τ must appear to the right of the universal in Γ, then β^ will also be declared after α^ in every extension of variable’sdeclarationα : κ.Weusemarkersasdelimiterswithin Γ.Thisholdsforeveryvarietyofdeclaration,includingequations ocofnittsexlatss.tFporermexisaem’spoleu,tpruutleco⊃nIteaxdtd(s∆◮,◮P,Pw,∆hi′c)hshteolulslditbehodwromppuecdh. socfoupninivgerasnadlvdaerpiaebnldeesn.cTiheiss,rwighiidcihtyaariedsnoinnterinvfioarlciinngatyspetetivnagriwabitlhe (Weabusenotationbywriting◮Pratherthanclutteringthecontext higher-rankpolymorphism. withadummyαandwriting◮α.) Acompletealgorithmiccontext,denotedbyΩ,isanalgorith- 5.3 Determinacy miccontextwithnounsolvedexistentialvariabledeclarations. Assuming an equality can yield inconsistency: for example, Givenappropriateinputs(Γ,e,A,p)tothealgorithmicjudgments, zero = succ(zero). We write ∆⊥ for either a valid algorithmic onlyonesetofoutputs(C,q,∆)isderivable(Theorem5(Determi- context∆orinconsistency⊥. nacyofTyping)intheappendix,p.21).Weusethisproperty(for spinejudgments)intheproofofsoundness. 5.1 Contextsubstitution[Γ]AandholenotationΓ[Θ] 6. Soundness An algorithmic context can be viewed as a substitution for its solved existential variables. Forexample, α^ = 1,β^ = α^→1can We show that the algorithmic system is sound with respect to be applied as if it were the substitution 1/α^,(α^→1)/β^ (applied thedeclarativesystem.Soundnessforthemutually-recursivejudg- righttoleft),orthesimultaneoussubstitution1/α^,(1→1)/β^.We ments depends on lemmas for the auxiliary judgments (instanti- write[Γ]AforΓ appliedasasubstitution(Figure9). ation,equality elimination,checkprop, algorithmicsubtyping and Applying acompletecontext toatypeA (provided itiswell- matchcoverage),whichareinAppendixE.2forspacereasons. formed: Ω ⊢ A type) yields a type [Ω]A with no existentials. Themainsoundnessresulthassixmutually-recursiveparts,one Suchatypeiswell-formedunderthedeclarativecontextobtained foreachofthechecking,synthesis,spine,andmatchjudgments— by dropping all the existential declarations and applying Ω to includingtheprincipality-recoveringspinejudgment.Weomitthe declarationsx:A(toyieldx:[Ω]A).Wecanthinkofthiscontext partsforthematchjudgments;seetheappendix,p.22. astheresultofapplyingΩtoitself:[Ω]Ω.Moregenerally,wecan Theorem8(SoundnessofAlgorithmicTyping).Given∆−→Ω: applyΩtoanycontextΓ thatitextends:contextapplication[Ω]Γ isgiveninFigure10.Theapplication[Ω]Γ isdefinedifandonlyif (i)IfΓ ⊢ e⇐Ap ⊣∆andΓ ⊢ Aptype Γ −→ Ω(contextextension; seeSection5.2),andapplyingΩto then[Ω]∆⊢ [Ω]e⇐[Ω]Ap. anysuchΓ yieldsthesamedeclarativecontext[Ω]Ω. (ii)IfΓ ⊢ e⇒Ap ⊣∆then[Ω]∆⊢ [Ω]e⇒[Ω]Ap. Inadditiontoappendingdeclarations(asinthedeclarativesys- (iii)IfΓ ⊢ s:Ap≫Bq ⊣∆andΓ ⊢ Aptype tem),wesometimesinsert andreplacedeclarations, soanotation then[Ω]∆⊢ [Ω]s:[Ω]Ap≫[Ω]Bq. 7 2016/1/21 Γ ⊢ e⇐Ap ⊣∆ UnderinputcontextΓ,expressionechecksagainstinputtypeA,withoutputcontext∆ Γ ⊢ e⇒Ap ⊣∆ UnderinputcontextΓ,expressionesynthesizesoutputtypeA,withoutputcontext∆ UnderinputcontextΓ, Γ ⊢ s:Ap≫Cq ⊣∆ passingspinestoafunctionoftypeAsynthesizestypeC; Γ ⊢ s:Ap≫C⌈q⌉ ⊣∆ inthe⌈q⌉form,recoverprincipalityinqifpossible (x:Ap)∈Γ Γ ⊢ e⇒Aq ⊣Θ Θ⊢ A<:pol(B)B ⊣∆ Γ ⊢ A!type Γ ⊢ e⇐[Γ]A! ⊣∆ Var Sub Anno Γ ⊢ x⇒[Γ]Ap ⊣Γ Γ ⊢ e⇐Bp ⊣∆ Γ ⊢ (e:A)⇒[∆]A! ⊣∆ 1I 1Iα^ Γ ⊢ ()⇐1p ⊣Γ Γ[α^ :⋆]⊢ ()⇐α^ ⊣Γ[α^ :⋆=1] vchk-I Γ,α:κ⊢ v⇐Ap ⊣∆,α:κ,Θ Γ,α^ :κ⊢ es:[α^/α]A ≫Cq ⊣∆ ∀I ∀Spine Γ ⊢ v⇐∀α:κ.Ap ⊣∆ Γ ⊢ es:∀α:κ.Ap≫Cq ⊣∆ enotacase Γ ⊢ Ptrue ⊣Θ Θ⊢ e⇐[Θ]Ap ⊣∆ vchk-I Γ,◮P /P ⊣Θ Θ⊢ v⇐[Θ]A! ⊣∆,◮P,∆′ ∧I ⊃I Γ ⊢ e⇐A∧Pp ⊣∆ Γ ⊢ v⇐P⊃A! ⊣∆ vchk-I Γ,◮P /P ⊣⊥ Γ ⊢ Ptrue ⊣Θ Θ⊢ es:[Θ]Ap≫Cq ⊣∆ Γ,x:Ap⊢ v⇐Ap ⊣∆,x:Ap,Θ ⊃I⊥ ⊃Spine Rec Γ ⊢ v⇐P⊃A! ⊣Γ Γ ⊢ es:P⊃Ap≫Cq ⊣∆ Γ ⊢ recx.v⇐Ap ⊣∆ Γ,x:Ap⊢ e⇐Bp ⊣∆,x:Ap,Θ Γ[α^ :⋆,α^ :⋆,α^:⋆=α^ →α^ ],x:α^ ⊢ e⇐α^ ⊣∆,x:α^ ,∆′ 1 2 1 2 1 2 1 I Iα^ Γ ⊢ λx.e⇐A→Bp ⊣∆ Γ[α^ :⋆]⊢ λx.e⇐α^ ⊣∆ → → Γ ⊢ e⇒Ap ⊣Θ Γ ⊢ s:A!≫C66! ⊣∆ Γ ⊢ s:Ap≫Cq ⊣∆ Θ⊢ s:Ap≫C⌈q⌉ ⊣∆ FEV(C)=∅ (p=66!) or (q=!) or (FEV(C)6=∅) E SpineRecover SpinePass Γ ⊢ es⇒Cq ⊣∆ Γ ⊢ s:A!≫C⌈!⌉ ⊣∆ Γ ⊢ s:Ap≫C⌈q⌉ ⊣∆ (cid:0) (cid:1) → Γ ⊢ e⇐Ap ⊣Θ Θ⊢ s:[Θ]Bp≫Cq ⊣∆ Γ ⊢ ·:Ap≫Ap ⊣Γ EmptySpine Γ ⊢ es:A→Bp≫Cq ⊣∆ Spine Γ ⊢ e⇒A! ⊣Θ Θ⊢ Π::[Θ]A⇐[Θ]Cp ⊣∆ → Γ[α^ :⋆,α^ :⋆,α^ :⋆=α^ →α^ ]⊢ es:(α^ →α^ ) ≫C ⊣∆ ∆⊢ Πcovers[∆]A 2 1 1 2 1 2 α^Spine Case Γ[α^ :⋆]⊢ es:α^ ≫C ⊣∆ Γ ⊢ case(e,Π)⇐Cp ⊣∆ Figure11. Algorithmictyping,omittingrulesfor×,+,andVec (iv)IfΓ ⊢ s : A p ≫ B ⌈q⌉ ⊣ ∆ andΓ ⊢ Ap type then Proof sketch—SpineRecover case. By i.h., [Ω]Γ ⊢ [Ω]s : [Ω]∆⊢ [Ω]s:[Ω]Ap≫[Ω]B⌈q⌉. [Ω]A ! ≫ [Ω]C q. Our goal is to apply DeclSpineRecover, which requires that we show that for all C′ such that [Ω]Θ ⊢ Much of this proof is simply “turning the crank”: applying s:[Ω]A!≫C′66!,wehaveC′ =[Ω]C.Supposewehavesucha the induction hypothesis to each premise, yielding derivations of C′.Bycompleteness(Theorem11),Γ ⊢ s:[Γ]A!≫C′′ q ⊣∆′′ corresponding declarative judgments (with Ω applied to every- where∆′′ −→ Ω′′.Wealreadyhave(asasubderivation)Γ ⊢ s : thing in sight), and applying the corresponding declarative rule; A ! ≫ C66! ⊣ ∆, so by determinacy, C′′ = C and q =66! and for example, in the Sub case we finish the proof by applying ∆′′ = ∆.Withthehelpoflemmasabout contextapplication, we DeclSub.TheSpineRecovercaseisinteresting:wedofinishbyap- canshowC′ = [Ω′′]C′′ = [Ω′′]C=[Ω]C.(Usingcompleteness plyingDeclSpineRecover,butsinceDeclSpineRecovercontainsa is permitted since our measure says a non-principality-restoring premisethatquantifiesoveralldeclarativederivationsofacertain judgmentissmaller.) form, we must appeal to completeness! Consequently, soundness andcompletenessarereallytwopartsofonetheorem. These parts are mutually recursive—later, we’ll see that the 7. Completeness DeclSpineRecovercaseofcompletenessmustappealtosoundness We show that the algorithmic system is complete with respect (toshowthatthealgorithmictypehasnofreeexistentialvariables). to the declarative system. As with soundness, we need to show Wecannotinductonthegivenderivationalone,becausethederiva- completenessoftheauxiliaryalgorithmicjudgments.Weomitthe tionsinthe“forall”partofDeclSpineRecoverarenotsubderiva- full statements of these lemmas; as an example, if [Ω]α^ = [Ω]τ tions.Soweneedamoreinvolvedinductionmeasurethatcanmake andα^ ∈/ FV(τ)thenΓ ⊢ α^ :=τ:κ ⊣∆. theleapsbetweensoundness andcompleteness: lexicographic or- der with (1) the size of the subject term, (2) the judgment form, withordinaryspinejudgmentsconsideredsmallerthanrecovering 7.1 Separation spinejudgments,and(3)theheightofthederivation: To show completeness, we will need to show that wherever the declarativeruleDeclSpineRecoverisapplied,wecanapplytheal- ordinaryspinejudgment gorithmicruleSpineRecover.Thus,weneedtoshowthatsemantic e/s/Π, < , height(D) principality—that noother typecan begiven—entails that atype * recoveringspinejudgment + hasnofreeexistentialvariables. 8 2016/1/21 The principality-recovering rules are potentially applicable ∆ −→ Ω′ anddom(∆) = dom(Ω′) andΩ −→ Ω′ and when we start with a principal type A ! but produce C66!, with Γ ⊢ s : [Γ]A p′ ≫ B′ q′ ⊣ ∆ andB′ = [∆]B′ and Decl∀Spinechanging!to66!.Completeness(Thm.11)willusethe B=[Ω′]B′. “forall”partofDeclSpineRecover,whichquantifiesoveralltypes (iv)Aspart(iii),butwith≫B⌈q⌉··· and≫B′⌈q′⌉···. producedbythespinerulesunderagivendeclarativecontext[Ω]Γ. By i.h. we get an algorithmic spine judgment Γ ⊢ s : A′ ! ≫ Proofsketch—DeclSpineRecovercase. Byi.h.,Γ ⊢ s:[Γ]A!≫ C′66! ⊣ ∆.SinceA′isprincipal,unsolvedexistentialsinC′must C′ 66! ⊣ ∆ where ∆ −→ Ω′ and Ω −→ Ω′ and dom(∆) = havebeenintroducedwithinthisderivation—theycan’tbeinΓ al- dom(Ω′)andC=[Ω′]C′. ready.Thus,wemighthaveα^ :⋆⊢ s:A′ !≫β^66! ⊣α^ :⋆,β^ :⋆ To apply SpineRecover, we need to show FEV([∆]C′) = ∅. whereaDecl∀Spinesubderivationintroducedβ^,butα^can’tappear Suppose, for a contradiction, that FEV([∆]C′) 6= ∅. Construct inC′.Wealsocan’tequateα^ andβ^ in∆,whichwouldbetanta- a variant of Ω′ called Ω2 that has a different solution for some mount to C′ = α^. Knowing that unsolved existentials in C′ are α^ ∈ FEV([∆]C′). By soundness (Thm. 11), [Ω2]Γ ⊢ [Ω2]s : [Ω ]A ! ≫ [Ω ]C′66!.Usingaseparationlemmawiththetrivial “new”andindependent fromthoseinΓ meanswecanarguethat, 2 2 iftherewereanunsolvedexistentialinC′,itwouldcorrespondto separationΓ = (Γ ∗ ·)weget∆ = (∆L ∗ ∆R)and(Γ ∗ ·) −∗→ (∆ ∗ ∆ ) and FEV(C′) ⊆ dom(∆ ). That is, all existentials anunforcedchoiceinaDecl∀Spinesubderivation,invalidatingthe L R R in C′ were introduced within the derivation of the (algorithmic) “forall”partofDeclSpineRecover.Formalizingclaimslike“must spinejudgment.Thus,applyingΩ tothingsgivesthesameresult havebeenintroduced”requiresseveraldefinitions. 2 asΩ,exceptforC′,giving[Ω]Γ ⊢ [Ω]s : [Ω]A ! ≫ [Ω ]C′66!. 2 Definition1(Separation). Nowinstantiatethe“forallC ”premisewithC =[Ω ]C′,giving 2 2 2 AnalgorithmiccontextΓ is separable into ΓL ∗ ΓR if(1)Γ = C = [Ω2]C′. But we chose Ω2 to have a different solution for (ΓL,ΓR) and(2)forall(α^ :κ = τ) ∈ ΓR itisthecasethat α^ ∈FEV(C′),sowehaveC6=[Ω2]C′:Contradiction.Therefore FEV(τ)⊆dom(ΓR). FEV([∆]C′)=∅,sowecanapplySpineRecover. IfΓ isseparableintoΓ ∗ Γ ,thenΓ isself-contained inthe L R R sense that all existential variables declared in ΓR have solutions 8. DiscussionandRelatedWork whose existential variables are themselves declared in Γ . Every R contextΓ isseparableinto·∗Γ andintoΓ ∗·. A staggering amount of work has been done on GADTs and in- dexedtypes,andforspacereasonswecannot offeracomprehen- Definition2(Separation-PreservingExtension). sivesurveyoftheliterature.Sowecomparemoredeeplytofewer TheseparatedcontextΓ ∗Γ extendsto∆ ∗Γ ,written L R L R papers,tocommunicateourunderstandingofthedesignspace. (ΓL∗ΓR)−∗→(∆L∗∆R),if(ΓL,ΓR)−→(∆L,∆R) anddom(ΓL)⊆dom(∆L)anddom(ΓR)⊆dom(∆R). Proof theory and type theory. As described in Section 1, there Separation-preserving extension says that variables from one aretwologicalaccountsofequality—theidentitytypeofMartin- side of∗ haven’t “jumped” to the other side. Thus, ∆ may add LöfandtheequalitytypeofSchroeder-Heister(1994)andGirard L existentialvariablestoΓ ,and∆ mayaddexistentialvariablesto (1992). The Girard/Schroeder-Heister equality has a more direct L R Γ ,butnovariablefromΓ endsupin∆ andnovariablefromΓ connection topatternmatching, whichiswhywemake useof it. R L R R endsupin∆L.Itisnecessarytowrite(ΓL ∗ ΓR) −∗→ (∆L ∗ ∆R) Coquand (1996) pioneered the study of pattern matching in de- ratherthan(ΓL∗ΓR) −→ (∆L∗∆R),becauseonly−∗→ includes pendenttypetheory.OneperhapssurprisingfeatureofCoquand’s thedomainconditions.Forexample,(α^∗β^) −→ (α^,β^ =α^)∗·, pattern-matching syntax isthat itisstrictlystronger than Martin- butβ^hasjumpedtotheleftof∗inthecontext(α^,β^ =α^)∗·. Löf’seliminators. Hisrules canderive the uniqueness of identity proofsaswellasthedisjointnessofconstructors.Constructordis- Weprovemanylemmasabout separation, butuseonlyoneof jointnessisalsoderivablefromtheGirard/Schroeder-Heisterequal- them in the subsequent development (in the DeclSpineRecover ity,becausethereisnounifierfortwodistinctconstructors. caseoftypingcompleteness),andthenonlythepartforspines.It Infuturework,wehopetostudytherelationbetweenthesetwo saysthatifwehaveaspinewhosetypeAmentionsonlyvariables notionsofequalityinmoredepth;richerequationaltheories(such inΓ ,thentheoutputcontext∆extendsΓ andpreservesseparation, R asthetheoryofcommutativeringsortheβη-theoryofthelambda andtheoutputtypeCmentionsonlyvariablesin∆ : R calculus)donothavedecidableunification,butitseemsplausible Lemma(Separation—Main). that there are hybrid approaches which might let us retain some If ΓL∗ΓR ⊢s:Ap≫Cq⊣∆orΓL∗ΓR ⊢s:Ap≫C⌈q⌉ ⊣∆ of the convenience of the G/SH equality rule while retaining the andΓL∗ΓR ⊢ AptypeandFEV(A)⊆dom(ΓR)then∆=(∆L∗ decidabilityofMartin-Löf’sJeliminator. ∆R)and(ΓL∗ΓR)−∗→(∆L∗∆R)andFEV(C)⊆dom(∆R). Indexedandrefinementtypes. DependentML(XiandPfenning 7.2 Completenessoftyping 1999)indexedprogramswithpropositionalconstraints,extending theMLtypedisciplinetomaintainadditionalinvariantstrackedby Like soundness, completeness has six mutually-recursive parts. theconstraints. DML collected constraints from theprogram and Again,thematchjudgmentsareintheappendix,p.22. passedthemtoaconstraintsolver,atechniqueusedbysystemslike Theorem11(CompletenessofAlgorithmicTyping). Stardust(Dunfield2007)andliquidtypes(Rondonetal.2008). GivenΓ −→Ωsuchthatdom(Γ)=dom(Ω): From phantom types to GADTs. Leijen and Meijer (1999) in- (i)IfΓ ⊢ Aptypeand[Ω]Γ ⊢ [Ω]e⇐[Ω]Apandp′ ⊑p troduced the term phantom type to describe a technique for pro- thenthereexist∆andΩ′suchthat∆−→Ω′anddom(∆)= gramming in ML/Haskell where additional type parameters are dom(Ω′)andΩ−→Ω′andΓ ⊢ e⇐[Γ]Ap′ ⊣∆. usedtoconstrainwhenvaluesarewell-typed.Thisideaprovedto (ii)IfΓ ⊢ Ap type and[Ω]Γ ⊢ [Ω]e ⇒ A p thenthere have many applications, ranging from foreign function interfaces exist∆,Ω′,A′,andp′ ⊑ p suchthat∆ −→ Ω′ and (Blume2001)toencodingJava-stylesubtyping(FluetandPucella dom(∆)=dom(Ω′)andΩ−→Ω′ 2006). Phantom typesallow constructing valueswithconstrained andΓ ⊢ e⇒A′p′ ⊣∆andA′=[∆]A′andA=[Ω′]A′. types, but do not easily permit learning about type equalities by (iii)IfΓ ⊢ Ap typeand[Ω]Γ ⊢ [Ω]s : [Ω]A p ≫ B qand analyzingthem,puttingapplicationssuchasintensionaltypeanal- p′ ⊑ pthenthereexist∆,Ω′,B′,andq′ ⊑ qsuchthat ysis (Harper and Morrisett 1995) out of reach. Both Cheney and 9 2016/1/21 Hinze (2003) and Xi et al. (2003) proposed treating equalities as Matthias Blume. No-longer-foreign: Teaching an ML compiler to speak C afirst-classconcept, givingexplicitly-typed calculiforequalities, “natively”.ElectronicNotesinTheoreticalComputerScience,59(1),2001. butwithoutstudyingalgorithmsfortypeinference. JamesCheneyandRalfHinze. First-classphantomtypes. TechnicalReport Simonet and Pottier (2007) gave a constraint-based algorithm CUCISTR2003-1901,CornellUniversity,2003. for type inference for GADTs. It is this work which first identi- ThierryCoquand. Analgorithmfortype-checkingdependenttypes. Scienceof fied the potential intractibility of type inference arising from the ComputerProgramming,26(1–3):167–177,1996. interactionofhypotheticalconstraintsandunificationvariables.To RowanDaviesandFrankPfenning.Intersectiontypesandcomputationaleffects. InICFP,pages198–208,2000. resolvethisissuetheyintroducethenotionoftractableconstraints JoshuaDunfield. RefinedtypecheckingwithStardust. InProgrammingLan- (i.e.,constraintswherehypothetical equationsnever containexis- guagesmeetsProgrammingVerification(PLPV’07),2007. tentials),andrequireplacingenoughannotationsthatallconstraints JoshuaDunfieldandNeelakantanR.Krishnaswami. Completeandeasybidi- aretractable.Ingeneral,thiscouldrequireannotationsoncaseex- rectional typechecking for higher-rank polymorphism. In ICFP, 2013. pressions, so subsequent work focused on relaxing this require- arXiv:1306.6032 [cs.PL]. ment. Though quite different in technical detail, stratified infer- Joshua DunfieldandFrankPfenning. Type assignment forintersectionsand ence (Pottier and Régis-Gianas 2006) and wobbly types (Peyton unionsincall-by-valuelanguages.InFoSSaCS,pages250–266,2003. Jonesetal.2006)bothworkbypushingtypeinformationfroman- Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. notationstocaseexpressions,withstratifiedtypeinferenceliterally arXiv:cs/0403034 [cs.PL],2006. movingannotationsaround,andwobblytypestrackingwhichparts JacquesGarrigueandDidierRémy. Ambivalenttypesforprincipaltypeinfer- ofatypehavenounificationvariables.ModernGHCusestheOut- encewithGADTs.InAPLAS,2013. sideInalgorithm(Vytiniotisetal.2011),whichfurtherrelaxesthe Jean-YvesGirard.Afixpointtheoreminlinearlogic.PosttoLinearLogicmail- constraint:aslongascaseanalysiscannot modifywhatisknown inglist,http://www.seas.upenn.edu/~sweirich/types/archive/1992/ msg00030.html,1992. aboutanequation,thecaseanalysisispermitted. RobertHarperandGregMorrisett. Compilingpolymorphismusingintensional Inourtypesystem,thecheckingjudgmentofthebidirectional typeanalysis.InPOPL,pages130–141.ACMPress,1995. algorithm serves to propagate annotations, and our requirement GeorgiosKarachalias,TomSchrijvers,DimitriosVytiniotis,andSimonPeyton that the scrutinee of a case expression be principal ensures that Jones.GADTsmeettheirmatch:pattern-matchingwarningsthataccountfor no equations contain unification variables. This is close in effect GADTs,guards,andlaziness.InICFP,pages424–436,2015. to stratified types, and is less expressive than OutsideIn. This is NeelakantanR.Krishnaswami. Focusingonpatternmatching. InPOPL,pages a deliberate design choice to keep the declarative specification 366–378.ACMPress,2009. simple,ratherthananinherentlimitofourapproach.Tospecifythe KonstantinLäuferandMartinOdersky.Polymorphictypeinferenceandabstract OutsideInapproach,thecaseruleinourdeclarativesystemshould datatypes.ACMTrans.Prog.Lang.Sys.,16(5):1411–1430,1994. permitscrutinizinganexpressionifalltypesthatcanbesynthesized DaanLeijenandErikMeijer.Domainspecificembeddedcompilers.InUSENIX forithaveexactlythesameequations, eveniftheydifferintheir Conf.Domain-SpecificLanguages(DSL’99),pages109–122,1999. monotypeparts.Wethoughtsuchaspecisharderforprogrammers DaleMiller.Unificationunderamixedprefix.J.SymbolicComputation,14(4): todevelopanintuitionforthansimplysayingthatascrutineemust 321–358,1992. synthesizeauniquetype.However,thetechniqueweuse—higher- MartinOdersky,MatthiasZenger,andChristophZenger. Coloredlocaltype inference.InPOPL,pages41–53,2001. orderruleswithimplicationalpremiseslikeDeclSpineRecover— Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey shouldworkforthiscase. Washburn. Simpleunification-basedtypeinferenceforGADTs. InICFP, Morerecently,GarrigueandRémy(2013)proposedambivalent pages50–61,2006. types, which are a way of deciding when it is safe to generalize SimonPeytonJones,DimitriosVytiniotis,StephanieWeirich,andMarkShields. the type of a function using GADTs. This idea is orthogonal to Practicaltypeinferenceforarbitrary-ranktypes.J.FunctionalProgramming, our calculus, simply because we do no generalization at all: ev- 17(1):1–82,2007. erypolymorphicfunctiontakesanannotation.However,Garrigue BrigittePientka.Atype-theoreticfoundationforprogrammingwithhigher-order andRémy(2013)alsoemphasizetheimportanceofmonotonicity, abstractsyntaxandfirst-classsubstitutions. InPOPL,pages371–382,2008. whichsaysthatsubstitutionshouldbestableundersubtyping,that BenjaminC.Pierce.TypesandProgrammingLanguages.MITPress,2002. is,givingamoregeneral typeshould not causesubtyping tofail. BenjaminC.PierceandDavidN.Turner. Localtypeinference. ACMTrans. Thisconditionissatisfiedbyourbidirectionalsystem. Prog.Lang.Sys.,22:1–44,2000. Karachalias et al. (2015) developed a coverage algorithm for FrançoisPottierandYannRégis-Gianas.Stratifiedtypeinferenceforgeneralized GADTs that depends on external constraint solving; we offer a algebraicdatatypes.InPOPL,pages232–244,2006. moreself-containedbutstilllogically-motivatedapproach. PatrickRondon,MingKawaguchi,andRanjitJhala. Liquidtypes. InPLDI, pages159–169,2008. Extensions. To keep our formalization manageable, we left out PeterSchroeder-Heister. Definitionalreflectionandthecompletion. InExten- sionsofLogicProgramming,LNCS,pages333–347.Springer,1994. some features that would be desirable in practice. In particular, VincentSimonetandFrançoisPottier. Aconstraint-basedapproachtoguarded weneed(1)typeconstructorswhichtakeargumentsand(2)recur- algebraicdatatypes. ACMTransactionsonProgrammingLanguagesand sivetypes(Pierce2002,chapter 20).Theprimaryissuewithboth Systems(TOPLAS),29(1):1,2007. ofthesefeaturesisthattheyneedtopermitusingexistentialsand DimitriosVytiniotis,SimonPeytonJones,andTomSchrijvers. Letshouldnot other“large”typeconnectives,andoursystemseeminglyrelieson begeneralised. InWorkshoponTypesinLanguageDesignandImpl.(TLDI monotypes (which cannot contain such connectives). Thislimita- ’10),pages39–50,2010. tionshouldcreatenodifficultiesintypicalpractice,ifwetreatuser- Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers,and Martin Sulz- definedtypeconstructors,suchasList,asmonotypesandexpand mann. OutsideIn(X):Modular type inferencewith localassumptions. J. thedefinitiononlyasneeded:whencheckinganexpressionagainst FunctionalProgramming,21(4–5):333–412,2011. ausertypeconstructor,andwhendemandedbypatternmatching. KevinWatkins,IlianoCervesato,FrankPfenning,andDavidWalker.Aconcur- rentlogicalframework:Thepropositionalfragment.InTypesforProofsand Programs,pages355–377.SpringerLNCS3085,2004. References HongweiXiandFrankPfenning.Dependenttypesinpracticalprogramming.In POPL,pages214–227,1999. AndreasAbel,ThierryCoquand,andPeterDybjer. Verifyingasemanticβη- HongweiXi,ChiyanChen,andGangChen. Guardedrecursivedatatypecon- conversion test for Martin-Löf type theory. In Mathematics of Program structors.InPOPL,pages224–235,2003. Construction(MPC’08),volume5133ofLNCS,pages29–56,2008. 10 2016/1/21

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.