SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 6 1 CHAO-PINGCHEN∗ ANDRICHARDB.PARIS 0 2 n Abstract. Inthispaper,wepresentseriesrepresentationsoftheremaindersintheexpansions a for2/(et+1),sechtandcotht. Forexample,weprovethatfort>0andN ∈N:={1,2,...}, J N−1 0 secht= X (E2j2)j!t2j+RN(t) 1 j=0 with ] (−1)N2t2N ∞ (−1)k CA RN(t)= π2N−1 kX=0(k+ 21)2N−1(cid:16)t2+π2(k+ 12)2(cid:17), and . h N−1 t secht= E2j t2j+Θ(t,N) E2N t2N a X (2j)! (2N)! m j=0 with a suitable 0 < Θ(t,N) < 1. Here En are the Euler numbers. By using the obtained [ results, wededuce some inequalities andcompletely monotonic functions associated withthe 1 ratio of gamma functions. Furthermore, we give a (presumably new) quadratic recurrence v relationfortheBernoullinumbers. 2 9 1 2 1. Introduction 0 1. The Bernoulli polynomials Bn(x) and Euler polynomials En(x) are defined, respectively, by the generating functions: 0 6 text ∞ tn 2ext ∞ tn 1 = B (x) (t <2π) and = E (x) (t <π). et 1 n n! | | et+1 n n! | | : v − nX=0 nX=0 i The numbers B = B (0) and E = 2nE (1), which are known to be rational numbers and X n n n n 2 integers, respectively, are called Bernoulli and Euler numbers. r a It follows from [23, Chapter 4, Part I, Problem 154] that 2m 2m+1 B t t B 2j t2j < 1+ < 2j t2j (1.1) (2j)! et 1 − 2 (2j)! j=1 − j=1 X X for t > 0 and m N := N 0 , N := 1,2,3,... . The inequality (1.1) can be also found 0 ∈ ∪{ } { } in [12,24]. It is also known [31, p. 64] that n t t B 1+ = 2j t2j +( 1)nt2n+2ν (t) (n N ), (1.2) et 1 − 2 (2j)! − n ∈ 0 − j=1 X *CorrespondingAuthor. 2010Mathematics SubjectClassification. Primary11B68;Secondary26A48,26D15. Key words and phrases. Bernoulli polynomials and numbers; Euler polynomials and numbers; Completely monotonicfunctions;Inequality. 1 2 C.-P.CHENANDR.B.PARIS where ∞ 2 1 ν (t)= . (1.3) n (2π)2n k2n(t2+4π2k2) k=1 X Itiseasilyseenthat(1.2)implies(1.1). Koumandos[12]gavethefollowingintegralrepresentation of ν (t): n ( 1)n 1 1 ν (t)= − extB (x)dx. (1.4) n (2n+1)!et 1 2n+1 − Z0 Remark 1.1. From (1.4), it is possible to deduce (1.3) by making use of the expansion [20, p. 592, Eq. (24.8.2)] ∞ ( 1)n+12(2n+1)! sin(2kπx) B (x)= − (n N, 0 x 1). 2n+1 (2π)2n+1 k2n+1 ∈ ≤ ≤ k=1 X We then obtain from (1.4) that ∞ ∞ 1 2 1 extsin(2kπx) 2 1 ν (t)= dx= . n −et 1(2π)2n+1 k2n+1 (2π)2n k2n(t2+4π2k2) − k=1Z0 k=1 X X An alternative derivation of (1.2) and another integral representation of the remainder function ν (t) are given in the appendix. n Binet’s first formula [30, p. 16] for the logarithm of Γ(x) states that 1 ∞ t t e−xt lnΓ(x)= x lnx x+ln√2π+ 1+ dt (x>0). (1.5) − 2 − et 1 − 2 t2 (cid:18) (cid:19) Z0 (cid:18) − (cid:19) Combining(1.2)with(1.5),XuandHan[36]deducedin2009thatforeverym N ,thefunction 0 ∈ m 1 B R (x)=( 1)m lnΓ(x) x lnx+x ln√2π 2j (1.6) m − − − 2 − − 2j(2j 1)x2j−1 (cid:18) (cid:19) j=1 − X iscompletelymonotonicon(0, ). Recallthatafunctionf(x)issaidtobecompletelymonotonic ∞ on an interval I if it has derivatives of all orders on I and satisfies the following inequality: ( 1)nf(n)(x) 0 (x I, n N ). (1.7) 0 − ≥ ∈ ∈ For m=0,the complete monotonicitypropertyofR (x) wasprovedby Muldoon[19]. Alzer[2] m first proved in 1997 that R (x) is completely monotonic on (0, ). In 2006, Koumandos [12] m ∞ proved the double inequality (1.1), and then used (1.1) and (1.5) to give a simpler proof of the complete monotonicitypropertyofR (x). In2009,KoumandosandPedersen[13,Theorem2.1] m strengthened this result. Chen and Paris [9, Lemma 1] presented an analogous result to (1.1) given by 2m+1(1 22j)B t2j−1 2 t 2m (1 22j)B t2j−1 2j 2j − < 1+ < − (1.8) j (2j 1)! et+1 − 2 j (2j 1)! j=2 − j=2 − X X for t>0 and m N. The inequality (1.8) can also be written for t>0 and m N as 0 ∈ ∈ 2 m (1 22j)B t2j−1 ( 1)m+1 1 − 2j >0. (1.9) − et+1 − − j (2j 1)! j=1 − X SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 3 Based on the inequality (1.9), Chen and Paris [9, Theorem 1] provedthat for every m N , the 0 ∈ function m Γ(x+1) 1 1 B F (x)=( 1)m ln lnx 1 2j (1.10) m − Γ(x+ 1) − 2 − − 22j j(2j 1)x2j−1 (cid:18) 2 (cid:19) j=1(cid:18) (cid:19) − X iscompletelymonotonicon(0, ). Thisresultissimilartothecompletemonotonicitypropertyof ∞ R (x) in (1.6). In analogywith (1.2), these authorsalso considered[9, Eq. (2.4)]the remainder m r (t) in the expansion m 2 m (1 22j)B =1+ − 2jt2j−1+r (t) (1.11) et+1 j (2j 1)! m j=1 · − X and gave an integral representation for r (t) when t>0. m Chen [6] proposed the following conjecture. Conjecture 1.1. For t>0 and m N , let 0 ∈ et/3 e2t/3 m 2B (1) µ (t)= − 2j+1 3 t2j (1.12) m et 1 − (2j+1)! − j=0 X and et/4 e3t/4 m 2B (1) ν (t)= − 2j+1 4 t2j, (1.13) m et 1 − (2j+1)! − j=0 X where B (x) denotes the Bernoulli polynomials. Then, for t>0 and m N , n 0 ∈ ( 1)mµ (t)>0 (1.14) m − and ( 1)mν (t)>0. (1.15) m − Chen[6,Lemma 1]hasprovedthe statementsinConjecture 1.1form=0,1,2,and3. He has also pointed out in [6] that, if Conjecture 1.1 is true, then it follows that the functions Γ(x+ 2) m B (1) 1 U (x)=( 1)m ln 3 2j+1 3 (1.16) m − x1/3Γ(x+ 1) − j(2j+1)x2j 3 j=1 X and Γ(x+ 3) m B (1) 1 V (x)=( 1)m ln 4 2j+1 4 (1.17) m − x1/2Γ(x+ 1) − j(2j+1)x2j 4 j=1 X form N arecompletelymonotonicon(0, ). ThecompletemonotonicitypropertiesofU (x) 0 m ∈ ∞ and V (x) are similar to the complete monotonicity property of F (x) in (1.10). m m In this paper, we obtain the following results: (i) a series representation of the remainder r (t) in (1.11) (Theorem 2.1); (ii) a series representation of the remainder in the expansion of m secht involving the Euler numbers (Theorem 2.2), together with the double inequality for t>0 and m N , 0 ∈ 2m+1 2m E E 2j t2j <secht< 2j t2j; (1.18) (2j)! (2j)! j=0 j=0 X X 4 C.-P.CHENANDR.B.PARIS (iii) the proof of the inequality (1.15) for all m N , and a demonstration that the function 0 ∈ V (x) in (1.17) is completely monotonic on (0, ) (Remark 2.4); (iv) a series representation of m ∞ the remainder in the expansion for cotht (Theorem 2.3); and finally, (v) a quadratic recurrence relation for the Bernoulli numbers (Theorem 3.1). 2. Main results Theorem 2.1. For t>0 and m N, ∈ 2 m (1 22j)B =1+ − 2jt2j−1+( 1)m+1t2m+1s (t), (2.1) et+1 j (2j 1)! − m j=1 · − X where s (t) is given by m ∞ 4 1 s (t)= . (2.2) m π2m (2k+1)2m t2+π2(2k+1)2 k=0 X Proof. Boole’s summation formula ((cid:0)see [31, p. 17, Th(cid:1)eorem 1.4]) for a function f(t) defined on [0,1] with k continuous derivatives states that, for k N, ∈ 1k−1E (1) 1 1 f(1)= j f(j)(1)+f(j)(0) + f(k)(x)Ek−1(x)dx. (2.3) 2 j! 2(k 1)! Xj=0 (cid:16) (cid:17) − Z0 Noting [20, p. 590] that 2(2n+1 1) E (1)= − B (n N), (2.4) n n+1 n+1 ∈ we see that (22j 1)B E2j−1(1)= − 2j and E2j(1)=0 (j N). j ∈ The choice1 k =2m+1 in (2.3) yields m (22j 1)B f(1) f(0)= − 2j f(2j−1)(1)+f(2j−1)(0) − j (2j 1)! Xj=1 · − (cid:16) (cid:17) 1 1 + f(2m+1)(x)E (x)dx. (2.5) 2m (2m)! Z0 Application of the above formula to f(x)=ext then produces 2 m (1 22j)B et+1 =1+ j −(2j 1)2!jt2j−1+rm(t), (2.6) j=1 · − X where 1 t2m+1 1 r (t)= extE (x)dx. (2.7) m −et+1(2m)! 2m Z0 1Itisalsopossibletochoosek=2min(2.3)andtousetheFourierexpansion forE2m+1(x)in[31,p.16]to obtainthesameresult. SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 5 Using the following formula (see [31, p. 16]): ∞ 4(2m)! sin[(2k+1)πx] E (x)=( 1)m (m N, 0 x 1), (2.8) 2m − π2m+1 (2k+1)2m+1 ∈ ≤ ≤ k=0 X we obtain ( 1)m+14t2m+1 ∞ 1 sin[(2k+1)πx] r (t)= − ext dx m et+1 π2m+1 (2k+1)2m+1 k=0Z0 X ∞ 4t2m+1 1 =( 1)m+1 . − π2m+1 (2k+1)2m t2+π2(2k+1)2 k=0 X This completes the proof of Theorem 2.1. (cid:0) (cid:1) (cid:3) Remark 2.1. From (2.1) we retrieve (1.9). Remark 2.2. From [20, p. 592, Eq. (24.7.9)] and [32, p. 43, Ex. 12(i)] we have ∞ 4t2ncosh(πt) E (x)=( 1)nsin(πx) dt (0<x<1, n N ), 2n 0 − cosh(2πt) cos(2πx) ∈ Z0 − from which it follows that E (x)>0 and E (x)<0 (0<x<1, m N ). 4m 4m+2 0 ∈ By combining these inequalities with (2.6) and (2.7) we immediately obtain (1.8). Corollary 2.1. For t>0 and m N, ∈ 2et m (22j 1)B ( 1)m − 2jt2j−2 >0. (2.9) − (et+1)2 − j (2j 2)! j=1 · − X Proof. Differentiating the expression in (2.1), we find 2 et = m (22j −1)B2jt2j−2+( 1)m+1 t2m+1s (t) ′. (2.10) −(et+1)2 − j (2j 2)! − m j=1 · − X (cid:0) (cid:1) It is easy to see that ∞ 4 1 4 t2sm(t)+sm−1(t)= π2m (2k+1)2m = π2m(1−2−2m)ζ(2m), k=0 X where ζ(z) is the Riemann zeta function. This last expression can be written as 4 t2sm(t)= π2m(1−2−2m)ζ(2m)−sm−1(t). (2.11) Then, since s (t) is strictly decreasing for t > 0, we deduce from (2.11) that t2s (t) is strictly m m increasing for t>0. Hence, t2m+1s (t) is strictly increasing for t>0, and we then obtain from m (2.10) that ( 1)m 2et m (22j −1)B2jt2j−2 = t2m+1s (t) ′ >0 − (et+1)2 − j (2j 2)! m j=1 · − X (cid:0) (cid:1) for t>0 and m N. The proof is complete. (cid:3) ∈ 6 C.-P.CHENANDR.B.PARIS Theorem 2.2. For t>0 and N N, we have ∈ N−1 E secht= 2j t2j +R (t) (2.12) N (2j)! j=0 X with ∞ ( 1)N2t2N ( 1)k R (t)= − − , (2.13) N π2N−1 (k+ 1)2N−1 t2+π2(k+ 1)2 Xk=0 2 2 (cid:16) (cid:17) and N−1 E E secht= 2j t2j +Θ(t,N) 2N t2N (2.14) (2j)! (2N)! j=0 X with a suitable 0<Θ(t,N)<1. Proof. It follows from [34, p. 136] (see also [5, p. 458, Eq. (27.3)]) that ∞ π ( 1)k(2k+1) = − , 4cosh πx (2k+1)2+x2 2 k=0 X which can be w(cid:0)ritt(cid:1)en as ∞ 4 ( 1)k secht= − . (2.15) π 2 k=0(2k+1) 1+ 2t X π(2k+1) (cid:18) (cid:16) (cid:17) (cid:19) Substitution of x= 1 in (2.8) leads to 2 ∞ ( 1)k ( 1)jπ2j+1 − = − E . (2.16) (2k+1)2j+1 22j+2(2j)! 2j k=0 X Using the identity 1 N−1 qN = ( 1)jqj +( 1)N (q = 1) (2.17) 1+q − − 1+q 6 − j=0 X and (2.16), we obtain from (2.15) that 2N secht= 4 ∞ (−1)k N−1( 1)j 2t 2j +( 1)N π(22kt+1) π (2k+1) − π(2k+1) − (cid:16) (cid:17) 2 k=0 j=0 (cid:18) (cid:19) 1+ 2t X X π(2k+1) N−1 (cid:16) (cid:17) E = 2j t2j +R (t), N (2j)! j=0 X with ∞ 2 ( 1)N+k t2N R (t)= − . N π2N−1 (k+ 1)2N−1 t2+π2(k+ 1)2 k=0 2 2 X Noting that (2.16) holds, we find that R(cid:0) (t) can be wr(cid:1)itten as N E t2N F(t) 2N R (t)=Θ(t,N) , Θ(t,N):= , N (2N)! F(0) SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 7 where ∞ 1 1 F(t):= ( 1)kα , α := . − k k (k+ 1)2N−1 t2+π2(k+ 1)2 k=0 2 2 X Then it is easily seen that α > α for k N , t > 0 and N N; thus F(t) > 0 for t > 0. 2k 2k+1 0 ∈ ∈ Differentiation yields ∞ ( 1)kα ′ k F (t)= 2t − − t2+π2(k+ 1)2 k=0 2 X and a similar reasoning shows that F′(t)<0 for t>0. Hence, for all t>0 and N N, we have 0<F(t)<F(0) and thus 0<Θ(t,N)<1. The proof of Theorem 2.2 is complete.∈ (cid:3) Remark 2.3. Recalling that E >0 and E <0 (m N ), 4m 4m+2 0 ∈ we can deduce (1.18) from (2.14). Note that the inequality (1.18) can also be written as m E ( 1)m+1 secht 2j t2j >0 (t>0, m N ). (2.18) 0 − − (2j)! ∈ j=0 X Remark 2.4. It was shown in [6] that (1.13) can be written as m 2j 1 E t 2j ν (t)= + (2.19) m −2cosh(t) 2(2j)! 4 4 j=0 (cid:18) (cid:19) X and (1.15) is equivalent to (2.18). Hence, for t>0 and m N , (1.15) holds true. 0 ∈ It was also shown in [6] that ∞ et/4 e3t/4 1 e−xt m 2B (1) ∞ V (x)=( 1)m − + dt 2j+1 4 t2j−1e−xtdt m − "Z0 (cid:18) et−1 2(cid:19) t −j=1 (2j+1)! Z0 # X ∞ e−xt = ( 1)mν (t) dt. (2.20) m − t Z0 We obtain from (2.20) that for all m N , 0 ∈ ∞ ( 1)nV(n)(x)= ( 1)mν (t)tn−1e−xtdt>0 − m − m Z0 for x>0 and n N . Hence, the function V (x), defined by (1.17), is completely monotonic on 0 m ∈ (0, ). ∞ Sondow and Hadjicostas [29] introduced and studied the generalized-Euler-constant function γ(z), defined by ∞ 1 n+1 γ(z)= zn−1 ln , (2.21) n − n n=1 (cid:18) (cid:19) X where the series converges when z 1. Pilehrood and Pilehrood [22] considered the function | | ≤ zγ(z) (z 1). The function γ(z) generalizes both Euler’s constant γ(1) and the alternating | | ≤ Euler constant ln 4 = γ( 1) [27,28]. An interesting comparison by Sondow [27] is the double π − integral and alternating series 4 1 1 x 1 ∞ 1 n+1 ln = − dxdy = ( 1)n−1 ln . (2.22) π (1+xy)ln(xy) − n − n Z0 Z0 n=1 (cid:18) (cid:19) X 8 C.-P.CHENANDR.B.PARIS The formula (2.20) can provide integral representations for the constant π. For example, the choice (x,m)=(1/4,0) in (2.20) yields ∞ et/4 e3t/4 1 2e−t/4 4 − + dt=ln , (2.23) et 1 2 t π Z0 (cid:18) − (cid:19) which provides a new integralrepresentationfor the alternating Euler constantln 4. The choice π (x,m)=(3/4,0) in (2.20) yields ∞ et/4 e3t/4 1 2e−3t/4 π − + dt=ln . (2.24) et 1 2 t 3 Z0 (cid:18) − (cid:19) Many formulas exist for the representation of π, and a collection of these formulas is listed in [25,26]. For more history of π see [3,4,10]. Noting [6, Eq. (3.26)] that B (1) can be expressed in terms of the Euler numbers 2n+1 4 (2n+1)E B (1)= 2n (n N ), (2.25) 2n+1 4 − 42n+1 ∈ 0 we find that (1.17) can be written as Γ(x+ 3) m E 1 V (x)=( 1)m ln 4 + 2j . (2.26) m − x1/2Γ(x+ 1) j 42j+1x2j 4 j=1 · X From the inequalities V (x)>0 for x>0, we obtain the following m Corollary 2.2. For x>0, 2m E 1 Γ(x+ 3) 2m+1 E 1 x1/2exp 2j < 4 <x1/2exp 2j . (2.27) − j 42j+1x2j Γ(x+ 1) − j 42j+1x2j j=1 · 4 j=1 · X X TheproblemoffindingnewandsharpinequalitiesforthegammafunctionΓand,inparticular, for the Wallis ratio (2n 1)!! 1 Γ(n+ 1) − = 2 (2.28) (2n)!! √π Γ(n+1) hasattractedtheattentionofmanyresearchers(see[8,9,14–16,18]andreferencestherein). Here, we employ the special double factorial notation as follows: (2n)!!=2 4 6 (2n)=2nn!, 0!!=1, ( 1)!!=1, · · ··· − 1 (2n 1)!!=1 3 5 (2n 1)=π−1/22nΓ n+ ; − · · ··· − 2 (cid:18) (cid:19) see [1, p. 258]. For example, Chen and Qi [8] proved that for n N, ∈ 1 (2n 1)!! 1 − < , (2.29) π n+ 4 1 ≤ (2n)!! π n+ 1 π − 4 q q where the co(cid:0)nstants 4(cid:1) 1 and 1 are the be(cid:0)st poss(cid:1)ible. This inequality is a consequence of the π − 4 complete monotonicity on (0, ) of the function (see [7]) ∞ Γ(x+1) V(x)= . (2.30) x+ 1Γ(x+ 1) 4 2 q SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 9 If we write (2.27) as 1 2m+1 E 1 Γ(x+ 1) 1 2m E 1 exp 2j < 4 < exp 2j √x j 42j+1x2j Γ(x+ 3) √x j 42j+1x2j j=1 · 4 j=1 · X X and replace x by x+ 1, we find 4 1 2m+1 E 1 Γ(x+ 1) exp 2j < 2 x+ 41 Xj=1 j·42j+1(x+ 14)2j Γ(x+1) q 2m 1 E 1 2j < exp . (2.31) x+ 14 Xj=1 j·42j+1(x+ 14)2j q Noting that (2.28) holds, we then deduce from (2.31) that 2m+1 1 E 1 (2n 1)!! 2j exp < − π(x+ 14) Xj=1 j·42j+1(x+ 14)2j (2n)!! q 2m 1 E 1 2j < exp , (2.32) π(x+ 14) Xj=1 j·42j+1(x+ 14)2j q which generalizes a recently published result of Chen [6, Eq. (3.40)], who proved the inequality (2.32) for m=1. Theorem 2.3. For t>0 and N N , we have 0 ∈ N 22jB cotht= 2jt2j−1+σ (t), (2.33) N (2j)! j=0 X where ∞ ( 1)Nt2N+1 2 σ (t)= − , (2.34) N π2N k2N(t2+π2k2) k=1 X and N 22jB 22N+2B cotht= 2jt2j−1+θ(t,N) 2N+2t2N+1 (2.35) (2j)! (2N +2)! j=0 X with a suitable 0<θ(t,N)<1. Proof. It follows from [20, p. 126, Eq. (4.36.3)] that ∞ ∞ 1 1 1 2t 1 cotht= +2t = + . (2.36) t π2k2+t2 t π2 k2 1+( t )2 k=1 k=1 πk X X It is well known that (cid:0) (cid:1) ∞ 1 ( 1)j−1(2π)2jB 2j = − . (2.37) k2j 2(2j)! k=1 X 10 C.-P.CHENANDR.B.PARIS Using (2.17) and (2.37), we obtain from (2.36) that 1 ∞ 1 N−1 t 2j t 2N cotht= +2t ( 1)j +( 1)N kπ t Xk=1k2π2 Xj=0 − (cid:18)kπ(cid:19) − 1(cid:0)+ (cid:1)ktπ 2 1 N−122j+2B (cid:0) (cid:1) = + 2j+2t2j+1+σ (t) N t (2j+2)! j=0 X N 22jB = 2jt2j−1+σ (t) N (2j)! j=0 X with ∞ 2( 1)N t2N+1 σ (t)= − . N π2N k2N(t2+π2k2) k=1 X Noting that (2.37) holds, we can rewrite σ (t) as N 22N+2B σ (t)=θ(t,N) 2N+2 t2N+1, N (2N +2)! where ∞ f(t) 1 θ(t,N):= , f(t):= . f(0) k2N(t2+π2k2) k=1 X Obviously, f(t)>0 and is strictly decreasing for t>0. Hence, for all t>0, 0<f(t)<f(0)and thus 0<θ(t,N)<1. The proof of Theorem 2.3 is complete. (cid:3) The following expansion for Barnes G-function was established by Ferreira and Lo´pez [11, Theorem 1]. For arg(z) <π, | | 1 1 1 1 lnG(z+1)= z2+zlnΓ(z+1) z2+ z+ lnz lnA 4 − 2 2 12 − (cid:18) (cid:19) N−1 B + 2k+2 + (z) (N N), 2k(2k+1)(2k+2)z2k RN ∈ k=1 X where B are the Bernoulli numbers and A is the Glaisher–Kinkelin constant defined by 2k+2 n n2 n 1 n2 lnA= lim ln kk + + lnn+ , (2.38) n→∞( k=1 !−(cid:18) 2 2 12(cid:19) 4 ) Y the numerical value of A being 1.282427.... For (z)>0, the remainder (z) is given by N ℜ R ∞ t 2N B e−zt (z)= ktk dt. (2.39) RN Z0 et−1 −k=0 k! ! t3 X Estimatesfor (z) werealsoobtainedbyFerreiraandLo´pez[11],showingthattheexpansion N |R | is indeed an asymptotic expansion of lnG(z + 1) in sectors of the complex plane cut along the negative axis. Pedersen [21, Theorem 1.1] proved that for any N 1, the function x ≥ 7→ ( 1)N (x) is completely monotonic on (0, ). N − R ∞