ebook img

Some results associated with Bernoulli and Euler numbers with applications PDF

0.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some results associated with Bernoulli and Euler numbers with applications

SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 6 1 CHAO-PINGCHEN∗ ANDRICHARDB.PARIS 0 2 n Abstract. Inthispaper,wepresentseriesrepresentationsoftheremaindersintheexpansions a for2/(et+1),sechtandcotht. Forexample,weprovethatfort>0andN ∈N:={1,2,...}, J N−1 0 secht= X (E2j2)j!t2j+RN(t) 1 j=0 with ] (−1)N2t2N ∞ (−1)k CA RN(t)= π2N−1 kX=0(k+ 21)2N−1(cid:16)t2+π2(k+ 12)2(cid:17), and . h N−1 t secht= E2j t2j+Θ(t,N) E2N t2N a X (2j)! (2N)! m j=0 with a suitable 0 < Θ(t,N) < 1. Here En are the Euler numbers. By using the obtained [ results, wededuce some inequalities andcompletely monotonic functions associated withthe 1 ratio of gamma functions. Furthermore, we give a (presumably new) quadratic recurrence v relationfortheBernoullinumbers. 2 9 1 2 1. Introduction 0 1. The Bernoulli polynomials Bn(x) and Euler polynomials En(x) are defined, respectively, by the generating functions: 0 6 text ∞ tn 2ext ∞ tn 1 = B (x) (t <2π) and = E (x) (t <π). et 1 n n! | | et+1 n n! | | : v − nX=0 nX=0 i The numbers B = B (0) and E = 2nE (1), which are known to be rational numbers and X n n n n 2 integers, respectively, are called Bernoulli and Euler numbers. r a It follows from [23, Chapter 4, Part I, Problem 154] that 2m 2m+1 B t t B 2j t2j < 1+ < 2j t2j (1.1) (2j)! et 1 − 2 (2j)! j=1 − j=1 X X for t > 0 and m N := N 0 , N := 1,2,3,... . The inequality (1.1) can be also found 0 ∈ ∪{ } { } in [12,24]. It is also known [31, p. 64] that n t t B 1+ = 2j t2j +( 1)nt2n+2ν (t) (n N ), (1.2) et 1 − 2 (2j)! − n ∈ 0 − j=1 X *CorrespondingAuthor. 2010Mathematics SubjectClassification. Primary11B68;Secondary26A48,26D15. Key words and phrases. Bernoulli polynomials and numbers; Euler polynomials and numbers; Completely monotonicfunctions;Inequality. 1 2 C.-P.CHENANDR.B.PARIS where ∞ 2 1 ν (t)= . (1.3) n (2π)2n k2n(t2+4π2k2) k=1 X Itiseasilyseenthat(1.2)implies(1.1). Koumandos[12]gavethefollowingintegralrepresentation of ν (t): n ( 1)n 1 1 ν (t)= − extB (x)dx. (1.4) n (2n+1)!et 1 2n+1 − Z0 Remark 1.1. From (1.4), it is possible to deduce (1.3) by making use of the expansion [20, p. 592, Eq. (24.8.2)] ∞ ( 1)n+12(2n+1)! sin(2kπx) B (x)= − (n N, 0 x 1). 2n+1 (2π)2n+1 k2n+1 ∈ ≤ ≤ k=1 X We then obtain from (1.4) that ∞ ∞ 1 2 1 extsin(2kπx) 2 1 ν (t)= dx= . n −et 1(2π)2n+1 k2n+1 (2π)2n k2n(t2+4π2k2) − k=1Z0 k=1 X X An alternative derivation of (1.2) and another integral representation of the remainder function ν (t) are given in the appendix. n Binet’s first formula [30, p. 16] for the logarithm of Γ(x) states that 1 ∞ t t e−xt lnΓ(x)= x lnx x+ln√2π+ 1+ dt (x>0). (1.5) − 2 − et 1 − 2 t2 (cid:18) (cid:19) Z0 (cid:18) − (cid:19) Combining(1.2)with(1.5),XuandHan[36]deducedin2009thatforeverym N ,thefunction 0 ∈ m 1 B R (x)=( 1)m lnΓ(x) x lnx+x ln√2π 2j (1.6) m −  − − 2 − − 2j(2j 1)x2j−1 (cid:18) (cid:19) j=1 − X   iscompletelymonotonicon(0, ). Recallthatafunctionf(x)issaidtobecompletelymonotonic ∞ on an interval I if it has derivatives of all orders on I and satisfies the following inequality: ( 1)nf(n)(x) 0 (x I, n N ). (1.7) 0 − ≥ ∈ ∈ For m=0,the complete monotonicitypropertyofR (x) wasprovedby Muldoon[19]. Alzer[2] m first proved in 1997 that R (x) is completely monotonic on (0, ). In 2006, Koumandos [12] m ∞ proved the double inequality (1.1), and then used (1.1) and (1.5) to give a simpler proof of the complete monotonicitypropertyofR (x). In2009,KoumandosandPedersen[13,Theorem2.1] m strengthened this result. Chen and Paris [9, Lemma 1] presented an analogous result to (1.1) given by 2m+1(1 22j)B t2j−1 2 t 2m (1 22j)B t2j−1 2j 2j − < 1+ < − (1.8) j (2j 1)! et+1 − 2 j (2j 1)! j=2 − j=2 − X X for t>0 and m N. The inequality (1.8) can also be written for t>0 and m N as 0 ∈ ∈ 2 m (1 22j)B t2j−1 ( 1)m+1 1 − 2j >0. (1.9) − et+1 − − j (2j 1)! j=1 − X   SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 3 Based on the inequality (1.9), Chen and Paris [9, Theorem 1] provedthat for every m N , the 0 ∈ function m Γ(x+1) 1 1 B F (x)=( 1)m ln lnx 1 2j (1.10) m −  Γ(x+ 1) − 2 − − 22j j(2j 1)x2j−1 (cid:18) 2 (cid:19) j=1(cid:18) (cid:19) − X   iscompletelymonotonicon(0, ). Thisresultissimilartothecompletemonotonicitypropertyof ∞ R (x) in (1.6). In analogywith (1.2), these authorsalso considered[9, Eq. (2.4)]the remainder m r (t) in the expansion m 2 m (1 22j)B =1+ − 2jt2j−1+r (t) (1.11) et+1 j (2j 1)! m j=1 · − X and gave an integral representation for r (t) when t>0. m Chen [6] proposed the following conjecture. Conjecture 1.1. For t>0 and m N , let 0 ∈ et/3 e2t/3 m 2B (1) µ (t)= − 2j+1 3 t2j (1.12) m et 1 − (2j+1)! − j=0 X and et/4 e3t/4 m 2B (1) ν (t)= − 2j+1 4 t2j, (1.13) m et 1 − (2j+1)! − j=0 X where B (x) denotes the Bernoulli polynomials. Then, for t>0 and m N , n 0 ∈ ( 1)mµ (t)>0 (1.14) m − and ( 1)mν (t)>0. (1.15) m − Chen[6,Lemma 1]hasprovedthe statementsinConjecture 1.1form=0,1,2,and3. He has also pointed out in [6] that, if Conjecture 1.1 is true, then it follows that the functions Γ(x+ 2) m B (1) 1 U (x)=( 1)m ln 3 2j+1 3 (1.16) m −  x1/3Γ(x+ 1) − j(2j+1)x2j 3 j=1 X   and Γ(x+ 3) m B (1) 1 V (x)=( 1)m ln 4 2j+1 4 (1.17) m −  x1/2Γ(x+ 1) − j(2j+1)x2j 4 j=1 X form N arecompletelymonotonicon(0, ). ThecompletemonotonicitypropertiesofU (x) 0 m ∈ ∞ and V (x) are similar to the complete monotonicity property of F (x) in (1.10). m m In this paper, we obtain the following results: (i) a series representation of the remainder r (t) in (1.11) (Theorem 2.1); (ii) a series representation of the remainder in the expansion of m secht involving the Euler numbers (Theorem 2.2), together with the double inequality for t>0 and m N , 0 ∈ 2m+1 2m E E 2j t2j <secht< 2j t2j; (1.18) (2j)! (2j)! j=0 j=0 X X 4 C.-P.CHENANDR.B.PARIS (iii) the proof of the inequality (1.15) for all m N , and a demonstration that the function 0 ∈ V (x) in (1.17) is completely monotonic on (0, ) (Remark 2.4); (iv) a series representation of m ∞ the remainder in the expansion for cotht (Theorem 2.3); and finally, (v) a quadratic recurrence relation for the Bernoulli numbers (Theorem 3.1). 2. Main results Theorem 2.1. For t>0 and m N, ∈ 2 m (1 22j)B =1+ − 2jt2j−1+( 1)m+1t2m+1s (t), (2.1) et+1 j (2j 1)! − m j=1 · − X where s (t) is given by m ∞ 4 1 s (t)= . (2.2) m π2m (2k+1)2m t2+π2(2k+1)2 k=0 X Proof. Boole’s summation formula ((cid:0)see [31, p. 17, Th(cid:1)eorem 1.4]) for a function f(t) defined on [0,1] with k continuous derivatives states that, for k N, ∈ 1k−1E (1) 1 1 f(1)= j f(j)(1)+f(j)(0) + f(k)(x)Ek−1(x)dx. (2.3) 2 j! 2(k 1)! Xj=0 (cid:16) (cid:17) − Z0 Noting [20, p. 590] that 2(2n+1 1) E (1)= − B (n N), (2.4) n n+1 n+1 ∈ we see that (22j 1)B E2j−1(1)= − 2j and E2j(1)=0 (j N). j ∈ The choice1 k =2m+1 in (2.3) yields m (22j 1)B f(1) f(0)= − 2j f(2j−1)(1)+f(2j−1)(0) − j (2j 1)! Xj=1 · − (cid:16) (cid:17) 1 1 + f(2m+1)(x)E (x)dx. (2.5) 2m (2m)! Z0 Application of the above formula to f(x)=ext then produces 2 m (1 22j)B et+1 =1+ j −(2j 1)2!jt2j−1+rm(t), (2.6) j=1 · − X where 1 t2m+1 1 r (t)= extE (x)dx. (2.7) m −et+1(2m)! 2m Z0 1Itisalsopossibletochoosek=2min(2.3)andtousetheFourierexpansion forE2m+1(x)in[31,p.16]to obtainthesameresult. SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 5 Using the following formula (see [31, p. 16]): ∞ 4(2m)! sin[(2k+1)πx] E (x)=( 1)m (m N, 0 x 1), (2.8) 2m − π2m+1 (2k+1)2m+1 ∈ ≤ ≤ k=0 X we obtain ( 1)m+14t2m+1 ∞ 1 sin[(2k+1)πx] r (t)= − ext dx m et+1 π2m+1 (2k+1)2m+1 k=0Z0 X ∞ 4t2m+1 1 =( 1)m+1 . − π2m+1 (2k+1)2m t2+π2(2k+1)2 k=0 X This completes the proof of Theorem 2.1. (cid:0) (cid:1) (cid:3) Remark 2.1. From (2.1) we retrieve (1.9). Remark 2.2. From [20, p. 592, Eq. (24.7.9)] and [32, p. 43, Ex. 12(i)] we have ∞ 4t2ncosh(πt) E (x)=( 1)nsin(πx) dt (0<x<1, n N ), 2n 0 − cosh(2πt) cos(2πx) ∈ Z0 − from which it follows that E (x)>0 and E (x)<0 (0<x<1, m N ). 4m 4m+2 0 ∈ By combining these inequalities with (2.6) and (2.7) we immediately obtain (1.8). Corollary 2.1. For t>0 and m N, ∈ 2et m (22j 1)B ( 1)m − 2jt2j−2 >0. (2.9) − (et+1)2 − j (2j 2)!  j=1 · − X   Proof. Differentiating the expression in (2.1), we find 2 et = m (22j −1)B2jt2j−2+( 1)m+1 t2m+1s (t) ′. (2.10) −(et+1)2 − j (2j 2)! − m j=1 · − X (cid:0) (cid:1) It is easy to see that ∞ 4 1 4 t2sm(t)+sm−1(t)= π2m (2k+1)2m = π2m(1−2−2m)ζ(2m), k=0 X where ζ(z) is the Riemann zeta function. This last expression can be written as 4 t2sm(t)= π2m(1−2−2m)ζ(2m)−sm−1(t). (2.11) Then, since s (t) is strictly decreasing for t > 0, we deduce from (2.11) that t2s (t) is strictly m m increasing for t>0. Hence, t2m+1s (t) is strictly increasing for t>0, and we then obtain from m (2.10) that ( 1)m 2et m (22j −1)B2jt2j−2 = t2m+1s (t) ′ >0 − (et+1)2 − j (2j 2)!  m j=1 · − X (cid:0) (cid:1) for t>0 and m N. The proof is complete.  (cid:3) ∈ 6 C.-P.CHENANDR.B.PARIS Theorem 2.2. For t>0 and N N, we have ∈ N−1 E secht= 2j t2j +R (t) (2.12) N (2j)! j=0 X with ∞ ( 1)N2t2N ( 1)k R (t)= − − , (2.13) N π2N−1 (k+ 1)2N−1 t2+π2(k+ 1)2 Xk=0 2 2 (cid:16) (cid:17) and N−1 E E secht= 2j t2j +Θ(t,N) 2N t2N (2.14) (2j)! (2N)! j=0 X with a suitable 0<Θ(t,N)<1. Proof. It follows from [34, p. 136] (see also [5, p. 458, Eq. (27.3)]) that ∞ π ( 1)k(2k+1) = − , 4cosh πx (2k+1)2+x2 2 k=0 X which can be w(cid:0)ritt(cid:1)en as ∞ 4 ( 1)k secht= − . (2.15) π 2 k=0(2k+1) 1+ 2t X π(2k+1) (cid:18) (cid:16) (cid:17) (cid:19) Substitution of x= 1 in (2.8) leads to 2 ∞ ( 1)k ( 1)jπ2j+1 − = − E . (2.16) (2k+1)2j+1 22j+2(2j)! 2j k=0 X Using the identity 1 N−1 qN = ( 1)jqj +( 1)N (q = 1) (2.17) 1+q − − 1+q 6 − j=0 X and (2.16), we obtain from (2.15) that 2N secht= 4 ∞ (−1)k N−1( 1)j 2t 2j +( 1)N π(22kt+1) π (2k+1) − π(2k+1) − (cid:16) (cid:17) 2 k=0 j=0 (cid:18) (cid:19) 1+ 2t X X π(2k+1)   N−1  (cid:16) (cid:17)  E = 2j t2j +R (t), N (2j)! j=0 X with ∞ 2 ( 1)N+k t2N R (t)= − . N π2N−1 (k+ 1)2N−1 t2+π2(k+ 1)2 k=0 2 2 X Noting that (2.16) holds, we find that R(cid:0) (t) can be wr(cid:1)itten as N E t2N F(t) 2N R (t)=Θ(t,N) , Θ(t,N):= , N (2N)! F(0) SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 7 where ∞ 1 1 F(t):= ( 1)kα , α := . − k k (k+ 1)2N−1 t2+π2(k+ 1)2 k=0 2 2 X Then it is easily seen that α > α for k N , t > 0 and N N; thus F(t) > 0 for t > 0. 2k 2k+1 0 ∈ ∈ Differentiation yields ∞ ( 1)kα ′ k F (t)= 2t − − t2+π2(k+ 1)2 k=0 2 X and a similar reasoning shows that F′(t)<0 for t>0. Hence, for all t>0 and N N, we have 0<F(t)<F(0) and thus 0<Θ(t,N)<1. The proof of Theorem 2.2 is complete.∈ (cid:3) Remark 2.3. Recalling that E >0 and E <0 (m N ), 4m 4m+2 0 ∈ we can deduce (1.18) from (2.14). Note that the inequality (1.18) can also be written as m E ( 1)m+1 secht 2j t2j >0 (t>0, m N ). (2.18) 0 −  − (2j)!  ∈ j=0 X   Remark 2.4. It was shown in [6] that (1.13) can be written as m 2j 1 E t 2j ν (t)= + (2.19) m −2cosh(t) 2(2j)! 4 4 j=0 (cid:18) (cid:19) X and (1.15) is equivalent to (2.18). Hence, for t>0 and m N , (1.15) holds true. 0 ∈ It was also shown in [6] that ∞ et/4 e3t/4 1 e−xt m 2B (1) ∞ V (x)=( 1)m − + dt 2j+1 4 t2j−1e−xtdt m − "Z0 (cid:18) et−1 2(cid:19) t −j=1 (2j+1)! Z0 # X ∞ e−xt = ( 1)mν (t) dt. (2.20) m − t Z0 We obtain from (2.20) that for all m N , 0 ∈ ∞ ( 1)nV(n)(x)= ( 1)mν (t)tn−1e−xtdt>0 − m − m Z0 for x>0 and n N . Hence, the function V (x), defined by (1.17), is completely monotonic on 0 m ∈ (0, ). ∞ Sondow and Hadjicostas [29] introduced and studied the generalized-Euler-constant function γ(z), defined by ∞ 1 n+1 γ(z)= zn−1 ln , (2.21) n − n n=1 (cid:18) (cid:19) X where the series converges when z 1. Pilehrood and Pilehrood [22] considered the function | | ≤ zγ(z) (z 1). The function γ(z) generalizes both Euler’s constant γ(1) and the alternating | | ≤ Euler constant ln 4 = γ( 1) [27,28]. An interesting comparison by Sondow [27] is the double π − integral and alternating series 4 1 1 x 1 ∞ 1 n+1 ln = − dxdy = ( 1)n−1 ln . (2.22) π (1+xy)ln(xy) − n − n Z0 Z0 n=1 (cid:18) (cid:19) X 8 C.-P.CHENANDR.B.PARIS The formula (2.20) can provide integral representations for the constant π. For example, the choice (x,m)=(1/4,0) in (2.20) yields ∞ et/4 e3t/4 1 2e−t/4 4 − + dt=ln , (2.23) et 1 2 t π Z0 (cid:18) − (cid:19) which provides a new integralrepresentationfor the alternating Euler constantln 4. The choice π (x,m)=(3/4,0) in (2.20) yields ∞ et/4 e3t/4 1 2e−3t/4 π − + dt=ln . (2.24) et 1 2 t 3 Z0 (cid:18) − (cid:19) Many formulas exist for the representation of π, and a collection of these formulas is listed in [25,26]. For more history of π see [3,4,10]. Noting [6, Eq. (3.26)] that B (1) can be expressed in terms of the Euler numbers 2n+1 4 (2n+1)E B (1)= 2n (n N ), (2.25) 2n+1 4 − 42n+1 ∈ 0 we find that (1.17) can be written as Γ(x+ 3) m E 1 V (x)=( 1)m ln 4 + 2j . (2.26) m −  x1/2Γ(x+ 1) j 42j+1x2j 4 j=1 · X   From the inequalities V (x)>0 for x>0, we obtain the following m Corollary 2.2. For x>0, 2m E 1 Γ(x+ 3) 2m+1 E 1 x1/2exp 2j < 4 <x1/2exp 2j . (2.27) − j 42j+1x2j Γ(x+ 1) − j 42j+1x2j j=1 · 4 j=1 · X X     TheproblemoffindingnewandsharpinequalitiesforthegammafunctionΓand,inparticular, for the Wallis ratio (2n 1)!! 1 Γ(n+ 1) − = 2 (2.28) (2n)!! √π Γ(n+1) hasattractedtheattentionofmanyresearchers(see[8,9,14–16,18]andreferencestherein). Here, we employ the special double factorial notation as follows: (2n)!!=2 4 6 (2n)=2nn!, 0!!=1, ( 1)!!=1, · · ··· − 1 (2n 1)!!=1 3 5 (2n 1)=π−1/22nΓ n+ ; − · · ··· − 2 (cid:18) (cid:19) see [1, p. 258]. For example, Chen and Qi [8] proved that for n N, ∈ 1 (2n 1)!! 1 − < , (2.29) π n+ 4 1 ≤ (2n)!! π n+ 1 π − 4 q q where the co(cid:0)nstants 4(cid:1) 1 and 1 are the be(cid:0)st poss(cid:1)ible. This inequality is a consequence of the π − 4 complete monotonicity on (0, ) of the function (see [7]) ∞ Γ(x+1) V(x)= . (2.30) x+ 1Γ(x+ 1) 4 2 q SOME RESULTS ASSOCIATED WITH BERNOULLI AND EULER NUMBERS WITH APPLICATIONS 9 If we write (2.27) as 1 2m+1 E 1 Γ(x+ 1) 1 2m E 1 exp 2j < 4 < exp 2j √x  j 42j+1x2j Γ(x+ 3) √x  j 42j+1x2j j=1 · 4 j=1 · X X     and replace x by x+ 1, we find 4 1 2m+1 E 1 Γ(x+ 1) exp 2j < 2 x+ 41  Xj=1 j·42j+1(x+ 14)2j Γ(x+1) q   2m 1 E 1 2j < exp . (2.31) x+ 14 Xj=1 j·42j+1(x+ 14)2j q   Noting that (2.28) holds, we then deduce from (2.31) that 2m+1 1 E 1 (2n 1)!! 2j exp < − π(x+ 14)  Xj=1 j·42j+1(x+ 14)2j (2n)!! q   2m 1 E 1 2j < exp , (2.32) π(x+ 14) Xj=1 j·42j+1(x+ 14)2j q   which generalizes a recently published result of Chen [6, Eq. (3.40)], who proved the inequality (2.32) for m=1. Theorem 2.3. For t>0 and N N , we have 0 ∈ N 22jB cotht= 2jt2j−1+σ (t), (2.33) N (2j)! j=0 X where ∞ ( 1)Nt2N+1 2 σ (t)= − , (2.34) N π2N k2N(t2+π2k2) k=1 X and N 22jB 22N+2B cotht= 2jt2j−1+θ(t,N) 2N+2t2N+1 (2.35) (2j)! (2N +2)! j=0 X with a suitable 0<θ(t,N)<1. Proof. It follows from [20, p. 126, Eq. (4.36.3)] that ∞ ∞ 1 1 1 2t 1 cotht= +2t = + . (2.36) t π2k2+t2 t π2 k2 1+( t )2 k=1 k=1 πk X X It is well known that (cid:0) (cid:1) ∞ 1 ( 1)j−1(2π)2jB 2j = − . (2.37) k2j 2(2j)! k=1 X 10 C.-P.CHENANDR.B.PARIS Using (2.17) and (2.37), we obtain from (2.36) that 1 ∞ 1 N−1 t 2j t 2N cotht= +2t ( 1)j +( 1)N kπ t Xk=1k2π2 Xj=0 − (cid:18)kπ(cid:19) − 1(cid:0)+ (cid:1)ktπ 2 1 N−122j+2B (cid:0) (cid:1)  = + 2j+2t2j+1+σ (t) N t (2j+2)! j=0 X N 22jB = 2jt2j−1+σ (t) N (2j)! j=0 X with ∞ 2( 1)N t2N+1 σ (t)= − . N π2N k2N(t2+π2k2) k=1 X Noting that (2.37) holds, we can rewrite σ (t) as N 22N+2B σ (t)=θ(t,N) 2N+2 t2N+1, N (2N +2)! where ∞ f(t) 1 θ(t,N):= , f(t):= . f(0) k2N(t2+π2k2) k=1 X Obviously, f(t)>0 and is strictly decreasing for t>0. Hence, for all t>0, 0<f(t)<f(0)and thus 0<θ(t,N)<1. The proof of Theorem 2.3 is complete. (cid:3) The following expansion for Barnes G-function was established by Ferreira and Lo´pez [11, Theorem 1]. For arg(z) <π, | | 1 1 1 1 lnG(z+1)= z2+zlnΓ(z+1) z2+ z+ lnz lnA 4 − 2 2 12 − (cid:18) (cid:19) N−1 B + 2k+2 + (z) (N N), 2k(2k+1)(2k+2)z2k RN ∈ k=1 X where B are the Bernoulli numbers and A is the Glaisher–Kinkelin constant defined by 2k+2 n n2 n 1 n2 lnA= lim ln kk + + lnn+ , (2.38) n→∞( k=1 !−(cid:18) 2 2 12(cid:19) 4 ) Y the numerical value of A being 1.282427.... For (z)>0, the remainder (z) is given by N ℜ R ∞ t 2N B e−zt (z)= ktk dt. (2.39) RN Z0 et−1 −k=0 k! ! t3 X Estimatesfor (z) werealsoobtainedbyFerreiraandLo´pez[11],showingthattheexpansion N |R | is indeed an asymptotic expansion of lnG(z + 1) in sectors of the complex plane cut along the negative axis. Pedersen [21, Theorem 1.1] proved that for any N 1, the function x ≥ 7→ ( 1)N (x) is completely monotonic on (0, ). N − R ∞

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.