ebook img

Solving Problems in Mathematical Analysis, Part III: Curves and Surfaces, Conditional Extremes, Curvilinear Integrals, Complex Functions, ... Fourier Series (Problem Books in Mathematics) PDF

386 Pages·2020·3.389 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solving Problems in Mathematical Analysis, Part III: Curves and Surfaces, Conditional Extremes, Curvilinear Integrals, Complex Functions, ... Fourier Series (Problem Books in Mathematics)

Problem Books in Mathematics Tomasz Radożycki Solving Problems in Mathematical Analysis, Part III Curves and Surfaces, Conditional Extremes, Curvilinear Integrals, Complex Functions, Singularities and Fourier Series Problem Books in Mathematics SeriesEditor: PeterWinkler DepartmentofMathematics DartmouthCollege Hanover,NH03755 USA Moreinformationaboutthisseriesathttp://www.springer.com/series/714 Tomasz Radoz˙ycki Solving Problems in Mathematical Analysis, Part III Curves and Surfaces, Conditional Extremes, Curvilinear Integrals, Complex Functions, Singularities and Fourier Series TomaszRadoz˙ycki FacultyofMathematicsandNatural Sciences,CollegeofSciences CardinalStefanWyszyn´skiUniversity Warsaw,Poland ScientificreviewforthePolishedition:JerzyJacekWojtkiewicz BasedonatranslationfromthePolishlanguageedition:“Rozwia˛zujemyzadaniazanalizy matematycznej” cze˛s´c´ 3 by Tomasz Radoz˙ycki Copyright ©WYDAWNICTWO OS´WIA- TOWE“FOSZE”2015AllRightsReserved. ISSN0941-3502 ISSN2197-8506 (electronic) ProblemBooksinMathematics ISBN978-3-030-38595-8 ISBN978-3-030-38596-5 (eBook) https://doi.org/10.1007/978-3-030-38596-5 MathematicsSubjectClassification:00-01,00A07,40-XX,30-XX,41-XX ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book is the third and last part of the collection of problems for students in theirfirst2yearsofundergraduatemathematicalanalysis.Itisintendedtoinclude all the material required from the students in the three–four semesters, although moreambitiousreaderswillprobablydiscoversomegaps(e.g.,Lebesgue’sintegral, Fourier’stransform,distributions).Duetothelimitedvolumeofthebook,however, Ihadtomakeachoice. This last part is intended for second-year students who have already gained significantexperienceinoperatingvariousformulas.Verydetailedtransformations, which appeared in the previous two parts, would lead to excessive growth of the volume. Therefore, when possible, I omit some computational details, referring to theresultsobtainedinthepreviousvolumes.Ialsoassumethatthereaderisalready familiarwithsomeknownintegrals(e.g.,Gaussian)andthattheydonotrequireany separatederivation. The chapters devoted to differential forms and oriented integrals are presented ina“parallel”way,sothatthereadercaneasilyseetherelationbetweenthevector descriptionandthatusingforms. Warsaw,Poland Tomasz Radoz˙ycki v Contents 1 ExaminingCurvesandSurfaces.......................................... 1 1.1 FindingCurvatureandTorsionofCurves........................... 2 1.2 Examiningk-SurfacesinN Dimensions............................ 18 1.3 ExaminingRuledSurfaces........................................... 31 1.4 ExercisesforIndependentWork..................................... 37 2 InvestigatingConditionalExtremes...................................... 41 2.1 UsingtheMethodoftheLagrangeMultipliers..................... 42 2.2 LookingforGlobalExtremes........................................ 56 2.3 ExercisesforIndependentWork..................................... 65 3 InvestigatingIntegralswithParameters................................. 67 3.1 ExaminingLimitsandContinuity................................... 69 3.2 DifferentiatingwithRespecttoParameters......................... 76 3.3 IntegratingoverParameters.......................................... 97 3.4 ExercisesforIndependentWork..................................... 101 4 ExaminingUnorientedCurvilinearIntegrals........................... 103 4.1 FindingAreaofSurfaces ............................................ 104 4.2 CalculatingVariousCurvilinearIntegrals........................... 114 4.3 ExercisesforIndependentWork..................................... 121 5 ExaminingDifferentialForms ............................................ 123 5.1 StudyingtheExteriorFormsOperatingonVectors................. 125 5.2 PerformingVariousOperationsonDifferentialForms............. 133 5.3 CalculatingExteriorDerivatives..................................... 145 5.4 LookingforPrimitiveForms ........................................ 149 5.5 FindingPotentialsinR3 ............................................. 164 5.6 ExercisesforIndependentWork..................................... 176 vii viii Contents 6 ExaminingOrientedCurvilinearIntegrals.............................. 179 6.1 CalculatingIntegralsoverCurves ................................... 181 6.2 CalculatingIntegralsoverSurfaces.................................. 189 6.3 UsingStokes’Theorem.............................................. 198 6.4 ExercisesforIndependentWork..................................... 217 7 StudyingFunctionsofComplexVariable................................ 219 7.1 ExaminingtheHolomorphicityofFunctions....................... 220 7.2 FindingDomainsofConvergenceofComplexSeries.............. 233 7.3 CalculatingContourIntegrals ....................................... 237 7.4 UsingCauchy’sTheorem............................................ 245 7.5 LookingforImagesofSets.......................................... 258 7.6 ExercisesforIndependentWork..................................... 264 8 InvestigatingSingularitiesofComplexFunctions ...................... 267 8.1 IdentifyingtheTypesofSingularities............................... 268 8.2 ExpandingFunctionsintoLaurentSeries........................... 278 8.3 UsingtheResidueTheoremtoCalculateDefiniteIntegrals ....... 289 8.4 UsingResidueTheoremtoFindSumsofSeries.................... 304 8.5 ExercisesforIndependentWork..................................... 312 9 DealingwithMultivaluedFunctions ..................................... 315 9.1 AnalyticallyContinuingFunctions.................................. 316 9.2 CalculatingIntegralsInvolvingFunctionswithBranchPoints .... 327 9.3 ExercisesforIndependentWork..................................... 357 10 StudyingFourierSeries.................................................... 359 10.1 ExaminingExpandabilityofFunctionsintoFourierSeries........ 360 10.2 FindingFourierCoefficients......................................... 363 10.3 ExercisesforIndependentWork..................................... 373 Index............................................................................... 375 Definitions and Notation Inthisbookseriesthenotationandconventionsadoptedintheformertwopartsare used.Severaladditionalindicationsaregivenbelow. • Partialderivativesareoftendenotedinthefollowingbriefway,e.g.,∂/∂x :=∂ , x ∂/∂ϕ :=∂ ,etc. ϕ • The versors of the coordinate axes are denoted as e(cid:2) , e(cid:2) , e(cid:2) . Similarly for the x y z spherical variables the following notation is used: e(cid:2) , e(cid:2) , e(cid:2) defined with the r θ ϕ formulas(5.1.22),(5.1.23),and(5.1.24). • ThecomplexplaneisdenotedwithCandthecompactifiedplanewithC¯. • Inthechaptersdealingwiththefunctionsofthecomplexvariable(i.e.,7,8,and 9),incontrasttotheotherchaptersofthebookandtothepreviousvolumes,the symbol “ln” denotes the natural logarithm, in order to avoid collision with the symbol“log”reservedforthecomplexlogarithm. ix Chapter 1 Examining Curves and Surfaces Thepresentchapterisconcernedwithbasicpropertiesofcurvesandsurfaces.Bya curve in RN, we understand the continuous function γ : [a,b] → RN (in R3 we willwriteγ(cid:2)(s)orr(cid:2)(s)).Thus,onecansaythatthecurveistheimageoftheinterval [a,b].Ifthefunctionγ isdifferentiable,thecurveisalsocalleddifferentiable. Ifagivencurvehascusps,itcanbepiecewisedifferentiable.Ifthefunctionγ is oftheclassCn,thecurveisalsocalledoftheclassCn.Ifacurveisofsufficiently highclassforagivenproblem,itiscalledasmoothcurve.Naturallyitmayalsobe piecewisesmooth.AcurveinR3isoftendefinedasanintersectionoftwosurfaces. Unlessstatedotherwise,itwillbeassumedbelo(cid:2)wthatN(cid:2) =3. (cid:2) (cid:2) Thecurvatureofacurveisdefinedasκ = (cid:2)dT(cid:2)/ds(cid:2) = T(cid:2)(cid:4)(s),wheres ∈ [a,b] (cid:2) denotestheparameterandT(s)isthevectortangenttothecurveatthepointlabeled bys,normalizedtounity.Withtheappropriatechoiceofs,onehasT(cid:2)(s)=γ(cid:2)(cid:4)(s). The vector N(cid:2)(s) = κ−1T(cid:2)(cid:4)(s) is the normal vector again normalized to unity. Theso-calledbinormalvectorisdefinedasB(cid:2) =T(cid:2) ×N(cid:2) andistheunitvectortoo. (cid:2) (cid:2) (cid:2) Theorthonormalsystemcomposedofthesethreevectors(T,N,andB)constitutes theFrenetframe.Inturn,theplanesdesignatedbytheFrenetframe,respectively (cid:2) called the normal plane (that perpendicular to T), the straightening plane (that (cid:2) (cid:2) perpendiculartoN),andthestrictlytangentplane(thatperpendiculartoB),create the Frenet trihedron. In some textbooks, however, the Frenet trihedron refers to (cid:2) (cid:2) (cid:2) vectorsT,N,andB andnotplanes. ThefollowingsystemofFrenet’sequationscanbederived(seeProblem2for thedetails): T(cid:2)(cid:4)(s)=κN(cid:2)(s), (1.0.1a) N(cid:2)(cid:4)(s)=−κT(cid:2)(s)+τB(cid:2)(s), (1.0.1b) B(cid:2)(cid:4)(s)=−τN(cid:2)(s). (1.0.1c) Naturallyκ andτ areingenerals-dependent. ©SpringerNatureSwitzerlandAG2020 1 T.Radoz˙ycki,SolvingProblemsinMathematicalAnalysis,PartIII,ProblemBooks inMathematics,https://doi.org/10.1007/978-3-030-38596-5_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.