Table Of ContentSolvedProblemsinQuantumandStatisticalMechanics
Michele Cini
Francesco Fucito
Mauro Sbragaglia
Solved Problems
in Quantum
and Statistical Mechanics
MicheleCini FrancescoFucito MauroSbragaglia
DepartmentofPhysics DepartmentofPhysics DepartmentofPhysics
UniversityofRome UniversityofRome UniversityofRome
TorVergata, TorVergataandINFN TorVergataandINFN
INFN
LaboratoriNazionaliFrascati
UNITEXT-CollanadiFisicaeAstronomia
ISSNprintedition:2038-5730 ISSNelectronicedition:2038-5765
ISBN978-88-470-2314-7 e-ISBN978-88-470-2315-4
DOI10.1007/978-88-470-2315-4
LibraryofCongressControlNumber:2011940537
SpringerMilanDordrechtHeidelbergLondonNewYork
(cid:2)c Springer-VerlagItalia2012
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart
ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,
recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmission
orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordis-
similarmethodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationare
briefexcerptsinconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyfor
thepurposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaser
ofthework.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisions
oftheCopyrightLawofthePublisherslocation,initscurrentversion,andpermissionforusemust
alwaysbeobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkatthe
CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyright
Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt
from the relevant protective laws and regulations and therefore free for general use. While the
adviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with
respecttothematerialcontainedherein.
Cover-Design:SimonaColombo,Milano
TypesettingwithLaTeX:CompoMatS.r.l.,Configni(RI)
PrintingandBinding:GrafichePorpora,Segrate(MI)
PrintedinItaly
Springer-VerlagItaliaS.r.l.,ViaDecembrio28,I-20137Milano
SpringerfapartediSpringerScience+BusinessMedia(www.springer.com)
Preface
ItalianstudentsstartstudyingQuantumandStatisticalMechanicsinthelastyearof
theirundergraduatestudies.Manyphysiciststhinkthesesubjectsarethecoreofan
educationinphysics.Atthesametime,thesetwosubjectsarenoteasilylearntby
theaveragestudent.InItalythefinalexamisdividedintwoseparateparts:thereis,
infact,awrittenandanoralone.Mosttextbooksconcentrateontheprinciplesofthe
theoryandtheapplicationsaredealtwithattheendofeachchapterunderthehead-
ings‘problems’or‘exercises’.Mostofthetimesthelatterconsistonlyofthetextof
theproblemwithsomevagueindicationsonhowtoproceedwiththesolution.Some
othertimesthesolutioniscompletelylefttothestudent.Theauthorsofthepresent
book think this is didactically wrong: these applications are crucial for a correct
understanding of the subject and help the students get acquainted with the mathe-
matical tools they have learnt in other classes. Many times we have noticed that a
simplechangeinthedenominationsoftheletterswasenoughtothrowastudentin
disarray: a function whose behaviour was familiar when the independent variable
wascalledx,becameunfathomablewhentheverysamevariablewastheenergyE.
Inreality,duringtheelementarystudyofclassicalphysics,theexercisesaremostly
straightforwardapplicationsofthegeneralformulaededucedfromexperienceorat
the most require the simplest notions of differential and integral calculus. Things
changewithQuantumandStatisticalMechanicswhosemathematicalformalismis
more complex. Also the problems and exercises reflect this point and the required
solutionsoftenneedlongerandmoreelaboratemanipulations.
It is for these reasons that in our teaching we have always dedicated a large
amountoftimetothediscussionoftheapplications,tothecorrectionoftheprob-
lems,andhavetriedtoelaboratewrittensolutionswithlengthydiscussionstohelp
the students get ready for the written exams. From this point to the publication of
ournotesithasbeenanaturalstep.
vi Preface
Acknowledgements
FrancescoFucitowishestospeciallythankM.Guagnelliwithwhomhehasshared
theteachingofStatisticalMechanicsattheUniversita`diRomaTorVergataformany
years and with whom he started this project which, for various reasons, could not
beendedtogether.HealsowantstothankM.G.DeDivitiisforcollaborationinan
early stage of this work. Francesco Fucito and Mauro Sbragaglia are also grateful
to their students in the classes of Statistical Mechanics in the years 2007−2010
and in particular we wish to thank Cristina Bertulli, Andrea Bussone, Roberta De
Angelis,GiulioDeMagistris,DavideLiberati,SebastianGrothans,ValerioLatini,
FrancescaMancini,StefanoMarchesani,ClaudiaNarcisi,FrancescoNazzaro,Clau-
diaViolante.Theirquestionsandsupporthavebeenofvaluablehelpforus.
Rome,September2011 MicheleCini
FrancescoFucito
MauroSbragaglia
Contents
PartI TheoreticalBackground
1 SummaryofQuantumandStatisticalMechanics .................. 3
1.1 OneDimensionalSchro¨dingerEquation........................ 3
1.2 OneDimensionalHarmonicOscillator......................... 5
1.3 VariationalMethod ......................................... 6
1.4 AngularMomentum ........................................ 8
1.5 Spin...................................................... 10
1.6 HydrogenAtom............................................ 10
1.7 SolutionsoftheThreeDimensionalSchro¨dingerEquation ........ 12
1.8 WKBMethod ............................................. 19
1.9 PerturbationTheory ........................................ 21
1.10 ThermodynamicPotentials................................... 23
1.11 FundamentalsofEnsembleTheory............................ 26
1.11.1 MicrocanonicalEnsemble............................. 28
1.11.2 CanonicalEnsemble.................................. 28
1.11.3 GrandCanonicalEnsemble............................ 29
1.11.4 QuantumStatisticalMechanics......................... 29
1.12 KineticApproach .......................................... 30
1.13 Fluctuations ............................................... 31
1.14 MathematicalFormulae ..................................... 32
References..................................................... 36
PartII QuantumMechanics–Problems
2 FormalismofQuantumMechanicsandOneDimensionalProblems.. 39
3 AngularMomentumandSpin ...................................113
viii Contents
4 CentralForceField.............................................145
5 PerturbationTheoryandWKBMethod ..........................163
PartIII StatisticalMechanics–Problems
6 ThermodynamicsandMicrocanonicalEnsemble ..................193
7 CanonicalEnsemble............................................227
8 GrandCanonicalEnsemble .....................................289
9 KineticPhysics ................................................301
10 Bose-EinsteinGases ............................................315
11 Fermi-DiracGases .............................................337
12 FluctuationsandComplements ..................................363
Index .............................................................393
Part I
Theoretical Background