ebook img

Solid State Physics: Principles and Modern Applications PDF

537 Pages·2009·16.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solid State Physics: Principles and Modern Applications

Solid State Physics · John J. Quinn Kyung-Soo Yi Solid State Physics Principles and Modern Applications 123 Prof.JohnJ.Quinn Prof.Kyung-SooYi UniversityofTennessee PusanNationalUniversity Dept.Physics Dept.Physics KnoxvilleTN37996 30Jangjeon-Dong USA Pusan609-735 [email protected] Korea,Republicof(SouthKorea) [email protected] ISBN978-3-540-92230-8 e-ISBN978-3-540-92231-5 DOI10.1007/978-3-540-92231-5 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009929177 (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright. Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermitted onlyundertheprovisions oftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) BookID 160928 ChapID FM Proof# 1 - 29/07/09 f o o The book is dedicated to Betsy Qurinn and Young-Sook Yi. 1 P d e t c e r r o c n U BookID 160928 ChapID FM Proof# 1 - 29/07/09 2 f Preface o 3 o r P This textbook had its originin severalcou rses taught for two decades (1965– 4 1985)atBrownUniversitybyoneoftheauthors(JJQ).Theoriginalassigned 5 d text for the first semester course was the classic “Introduction to Solid State 6 Physics” by C. Kittel. Many topics not covered in that text were included in 7 subsequentsemestersbecauseoftheireimportanceinresearchduringthe1960s 8 and 1970s. A number of the topics covered were first introduced in a course 9 on “Many Body Theory of Metals” given by JJQ as a Visiting Lecturer at 10 t theUniversityofPennsylvaniain1961–1962,andlaterincludedinacourseat 11 Purdue University when he wasca Visiting Professor (1964–1965). A sojourn 12 into academicadministrationin1984removedJJQ fromteaching for 8years. 13 On returning to a full time teaching–researchprofessorship at the University 14 e ofTennessee,heagainoffereda1yeargraduatecourseinSolidStatePhysics. 15 The course was structured so that the first semester (roughly the first half 16 of the text) introduced arll the essential concepts for students who wanted 17 exposuretosolidstatephysics.Thefirstsemestercouldcovertopics fromthe 18 r firstnine chapters.The secondsemestercovereda selectionofmoreadvanced 19 topicsforstudentsintendingtodoresearchinthisfield.Oneoftheco-authors 20 o (KSY) took this course in Solid State Physics as a PhD student at Brown 21 University. He added to and improved the lecture while teaching the subject 22 atPusanNationalcUniversityfrom1984.Thetextisatruecollaborativeeffort 23 of the co-authors. 24 The advanced topics in the second semester are covered briefly, but thor- 25 n oughlyenoughtoconveythe basic physicsofeachtopic.Referencespointthe 26 students who want more detail in the right direction. An entirely different 27 set of advanUced topics could have been chosen in the place of those in the 28 text. The choice was made primarily because of the research interests of the 29 authors. 30 In addition to Kittel’s classic Introduction to Solid State Physics, 7th 31 edn. (Wiley, New York, 1995), other books that influenced the evolution of 32 this bookare:Methods of Quantum Field Theory in Statistical Physics ed.by 33 A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinsky (Prentice-Hall, Englewood, 34 BookID 160928 ChapID FM Proof# 1 - 29/07/09 VIII Preface NJ, 1963); Solid State Physics ed. by N.W. Ashcroft, N.D. Mermin 35 (Saunder’s College, New York, 1975); Introduction to Solid State Theory ed. 36 by O. Madelung (Springer, Berlin, Heidelberg, New York, 1978); and Fun- 37 f damentals of Semiconductors ed. by P.Y. Yu, M. Cardona (Springer, Berlin, 38 Heidelberg, New York, 1995). 39 o Many graduate students at Brown, Tennessee, and Pusan have helped to 40 improve these lecture notes by pointing out sections that were difficult to 41 understand, and by catching errors in the text. Dor. Alex Tselis presented 42 the authors with his carefully written notes of the course at Brown when 43 he changed his field of study to medical science. We are grateful to all the 44 r students and colleagues who have contributed to making the lecture notes 45 better. 46 P Boththe co-authorswanttoacknowledgethe encouragementandsupport 47 of their families. The book is dedicated to them. 48 Knoxville and Pusan, d John J. Quinn 49 August 2008 Kyung-Soo Yi 50 e t c e r r o c n U BookID 160928 ChapID FM Proof# 1 - 29/07/09 51 f Contents o 52 o r P Part I Basic Concepts in Solid-State Physics 53 d 1 Crystal Structures ......................................... 3 54 1.1 Crystal Structure and Symmetry Groups.................. 3 55 1.2 Common Crystal Structueres............................. 10 56 1.3 Reciprocal Lattice ..................................... 15 57 1.4 Diffraction of X-Rays................................... 16 58 t 1.4.1 Bragg Reflection ............................... 17 59 1.4.2 Laue Equatcions................................ 17 60 1.4.3 Ewald Construction ............................ 19 61 1.4.4 Atomic Secattering Factor ....................... 20 62 1.4.5 Geometric Structure Factor ..................... 22 63 1.4.6 Experimental Techniques ....................... 23 64 r 1.5 Classification of Solids.................................. 24 65 1.5.1 Crystal Binding................................ 24 66 r 1.6 Binding Energy of Ionic Crystals......................... 27 67 Problems ......o............................................. 34 68 2 Lattice Vibrations ......................................... 37 69 2.1 Monatcomic Linear Chain................................ 37 70 2.2 Normal Modes......................................... 41 71 2.3 Mo¨ssbauer Effect ...................................... 44 72 n 2.4 Optical Modes......................................... 48 73 2.5 Lattice Vibrations in Three Dimensions................... 50 74 2U.5.1 Normal Modes................................. 52 75 2.5.2 Quantization .................................. 53 76 2.6 Heat Capacity of Solids................................. 54 77 2.6.1 Einstein Model ................................ 55 78 2.6.2 Modern Theory of the Specific Heat of Solids...... 57 79 2.6.3 Debye Model .................................. 59 80 BookID 160928 ChapID FM Proof# 1 - 29/07/09 X Contents 2.6.4 Evaluation of Summations over Normal Modes 81 for the Debye Model............................ 61 82 2.6.5 Estimate of RecoilFree Fractionin Mo¨ssbauerEffect 62 83 f 2.6.6 Lindemann Melting Formula .................... 63 84 2.6.7 Critical Points in the Phonon Spectrum........... 65 85 o 2.7 Qualitative Description of Thermal Expansion............. 67 86 2.8 Anharmonic Effects .................................... 69 87 2.9 Thermal Conductivity of an Insulator .o................... 71 88 2.10 Phonon Collision Rate.................................. 72 89 2.11 Phonon Gas........................................... 73 90 r Problems ................................................... 75 91 3 Free Electron Theory of Metals....P........................ 79 92 3.1 Drude Model .......................................... 79 93 3.2 Electrical Conductivity ................................. 79 94 3.3 Thermal Conductivity ....... ........................... 80 95 3.4 Wiedemann–Franz Law....d............................. 82 96 3.5 Criticisms of Drude Model .............................. 82 97 3.6 Lorentz Theory........................................ 82 98 3.6.1 Boltzmann Distreibution Function ................ 83 99 3.6.2 Relaxation Time Approximation ................. 83 100 3.6.3 Solution of Btoltzmann Equation ................. 83 101 3.6.4 Maxwell–Boltzmann Distribution ................ 84 102 3.7 Sommerfeld Theorycof Metals ........................... 84 103 3.8 Review of Elementary Statistical Mechanics ............... 86 104 3.8.1 Fermi–Deirac Distribution Function ............... 87 105 3.8.2 Density of States............................... 88 106 3.8.3 Thermodynamic Potential....................... 89 107 r 3.8.4 Entropy ...................................... 89 108 3.9 Fermi Functrion Integration Formula...................... 91 109 3.10 Heat Capacity of a Fermi Gas ........................... 93 110 3.11 Equationoof State of a Fermi Gas ........................ 94 111 3.12 Compressibility ........................................ 94 112 3.13 Electrical and Thermal Conductivities .................... 95 113 c 3.13.1 Electrical Conductivity ......................... 97 114 3.13.2 Thermal Conductivity .......................... 97 115 3.14 Critnique of Sommerfeld Model ........................... 99 116 3.15 Magnetoconductivity ................................... 99 117 3.16 Hall Effect and Magnetoresistance .......................100 118 U 3.17 Dielectric Function.....................................101 119 Problems ...................................................104 120 4 Elements of Band Theory..................................109 121 4.1 Energy Band Formation ................................109 122 4.2 Translation Operator ...................................110 123 4.3 Bloch’s Theorem.......................................111 124 BookID 160928 ChapID FM Proof# 1 - 29/07/09 Contents XI 4.4 Calculation of Energy Bands ............................112 125 4.4.1 Tight-Binding Method..........................112 126 4.4.2 Tight Binding in Second Quantization 127 f Representation ................................115 128 4.5 Periodic Potential......................................116 129 o 4.6 Free Electron Model....................................118 130 4.7 Nearly Free Electron Model .............................119 131 4.7.1 Degenerate Perturbation Theoroy .................120 132 4.8 Metals–Semimetals–Semiconductors–Insulators ............121 133 Problems ...................................................124 134 r 5 Use of Elementary Group Theory 135 P in Calculating Band Structure .............................129 136 5.1 Band Representation of Empty Lattice States .............129 137 5.2 Review of Elementary Group Theory .....................129 138 5.2.1 Some Examples of Simple Groups................130 139 5.2.2 Group Representatidon ..........................131 140 5.2.3 Examples of Representations of the Group 4mm ...132 141 5.2.4 Faithful Representation.........................134 142 e 5.2.5 Regular Representation.........................134 143 5.2.6 Reducible and Irreducible Representations ........134 144 5.2.7 Important Thteorems of Representation Theory 145 (without proof)................................135 146 c 5.2.8 Character of a Representation ...................135 147 5.2.9 Orthogonality Theorem.........................136 148 5.3 Empty Lattice Baends, Degeneracies and IRs...............137 149 5.3.1 Group of the Wave Vector k.....................138 150 5.4 Use of Irreducirble Representations .......................140 151 5.4.1 Determining the Linear Combinations 152 of Prlane Waves Belonging to Different IRs ........142 153 5.4.2 Compatibility Relations.........................144 154 o 5.5 Using the Irreducible Representations in Evaluating 155 Energy Bands .........................................146 156 5.6 Empty Lattice Bands for Cubic Structure .................148 157 c 5.6.1 Point Group of a Cubic Structure ................148 158 5.6.2 Face Centered Cubic Lattice ....................150 159 n 5.6.3 Body Centered Cubic Lattice....................153 160 5.7 Energy Bands of Common Semiconductors ................155 161 Problems ...................................................158 162 U 6 More Band Theory and the Semiclassical Approximation ..161 163 6.1 Orthogonalized Plane Waves ............................161 164 6.2 Pseudopotential Method ................................162 165 6.3 k·p Method and Effective Mass Theory ..................165 166

Description:
Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, mag
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.