ebook img

Solar flares as natural particle accelerators : a high-energy view from x-ray observations and theoretical models PDF

247 Pages·2008·6.99 MB·English
by  Wei Liu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solar flares as natural particle accelerators : a high-energy view from x-ray observations and theoretical models

SOLAR FLARES AS NATURAL PARTICLE ACCELERATORS: A HIGH-ENERGY VIEW FROM X-RAY OBSERVATIONS AND THEORETICAL MODELS Wei Liu NASA Goddard Space Flight Center To my wife Li Jin ii Figure 1: Artistic view of RHESSI observing the Sun from a near-earth orbit. RHESSI is a NASA Small Explorer mission designed to investigate particle acceleration and explosive energy release in solar (cid:176)ares. Since its launch on 2002 February 5, RHESSI has been providing scientists with unprecedented data revealing new physics and challenging existing theories. This mission inspired the work that eventually led to the production of this book [Courtesy of RHESSI Team]. Front cover picture | A full Sun image showing a (cid:176)are near disk center and an eruptive prominence on the west limb. iii iv Contents Preface ix Acknowledgements xi 1 Introduction 1 1.1 Solar Flare Observations and Models . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Stochastic Particle Acceleration Model . . . . . . . . . . . . . . . . . . . . . 2 1.3 Hard X-ray Observations and RHESSI Instruments . . . . . . . . . . . . . . 4 1.4 Introduction to This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 RHESSI Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2 Combining the Fokker-Planck and Hydrodynamic Codes . . . . . . . 6 2 Statistical Study of RHESSI Limb Flares 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Data Reduction and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Sample Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Imaging Spectra and Light Curves . . . . . . . . . . . . . . . . . . . 11 2.3 Case Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Single Loop Flares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Multiple Loop Flares . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Miscellaneous Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Statistical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Imaging Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.2 Statistics of the Relative Fluxes: FPs vs. LTs . . . . . . . . . . . . . 20 2.5 Flare Statistics and Selection Biases . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Flare Reconnection Model: 2003-11-03 X3.9 Flare 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Observations and Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Source Structure and Motion . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Imaging Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 v 4 Double Coronal Source: 2002-04-30 M1.4 Flare 33 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Observations and Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 Source Structure: Energy Dependence . . . . . . . . . . . . . . . . . 37 4.2.2 Source Structure: Temporal Evolution . . . . . . . . . . . . . . . . . 39 4.2.3 Spectral Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Interpretation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 Energy Dependence of Source Structure . . . . . . . . . . . . . . . . 46 4.3.2 Temporal Evolution of Source Structure . . . . . . . . . . . . . . . . 48 4.3.3 Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Conjugate HXR Footpoints: 2003-10-29 X10 Flare 53 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Observations and Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.1 RHESSI Light Curves and Images . . . . . . . . . . . . . . . . . . . 56 5.2.2 Imaging Spectroscopy of Footpoint and Loop-top Sources . . . . . . 59 5.2.3 Multiwavelength Images . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 Two-phase Unshearing Motions of HXR Footpoints . . . . . . . . . . . . . . 62 5.4 Temporal Correlations of Conjugate Footpoints . . . . . . . . . . . . . . . . 66 5.4.1 Spectral Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.2 Spatial Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.3 Magnetic Field Correlation . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.4 Correlations Among Spectral, Spatial, and Magnetic Field Parameters 71 5.4.5 Implications of Various Correlations . . . . . . . . . . . . . . . . . . 72 5.5 HXR Footpoint Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.5.1 Magnetic Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5.2 Column Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.5.3 Magnetic Mirroring and Column Density Combined . . . . . . . . . 78 5.5.4 Other Transport Efiects and FP Asymmetries . . . . . . . . . . . . . 79 5.5.5 Acceleration-induced Asymmetry . . . . . . . . . . . . . . . . . . . . 80 5.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6 Chromospheric Evaporation: 2003-11-13 M1.7 Flare 85 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 Observations and Data Analyses . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2.1 Source Structure and Evolution . . . . . . . . . . . . . . . . . . . . . 89 6.2.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2.3 The Neupert Efiect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3 Loop Density Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 vi 7 Modeling Impulsive Phase Solar Flares 109 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2.1 Stochastic Acceleration Model . . . . . . . . . . . . . . . . . . . . . 111 7.2.2 Particle Transport and Radiation Model . . . . . . . . . . . . . . . . 115 7.2.3 NRL Hydrodynamic Model . . . . . . . . . . . . . . . . . . . . . . . 117 7.2.4 Combining the Particle and Hydrodynamic Codes . . . . . . . . . . 118 7.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3.1 Case R: Reference Calculation . . . . . . . . . . . . . . . . . . . . . 123 7.3.2 Case A: Fiducial Run with SA Model . . . . . . . . . . . . . . . . . 125 7.3.3 Case B: Variable Electron Spectrum . . . . . . . . . . . . . . . . . . 134 7.3.4 Case C: Harder Electron Spectrum . . . . . . . . . . . . . . . . . . . 139 7.3.5 Case D: Smaller Normalization . . . . . . . . . . . . . . . . . . . . . 139 7.3.6 Comparing The Cases: A Summary . . . . . . . . . . . . . . . . . . 145 7.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8 Testing the Neupert Efiect 149 8.1 Energy Budget and the Neupert Efiect . . . . . . . . . . . . . . . . . . . . . 149 8.2 Case R: Reference Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.2.1 History of Energy Budget . . . . . . . . . . . . . . . . . . . . . . . . 151 8.2.2 Neupert Efiect Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.3 Cases A-D: Combined HD & Particle Calculation . . . . . . . . . . . . . . . 157 8.3.1 Case A: Fiducial Run with SA Model . . . . . . . . . . . . . . . . . 157 8.3.2 Case B: Variable Electron Spectrum . . . . . . . . . . . . . . . . . . 159 8.3.3 Case C: Harder Electron Spectrum . . . . . . . . . . . . . . . . . . . 160 8.3.4 Case D: Smaller Normalization . . . . . . . . . . . . . . . . . . . . . 160 8.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9 Hydrodynamic Simulation of the Decay Phase 166 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.2 Model of Suppression of Conduction and Plasma Heating . . . . . . . . . . 167 9.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 9.3.1 Case A: No Heating or Suppression of Conduction . . . . . . . . . . 170 9.3.2 Case B: Heating Only . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.3.3 Case C: Suppression of Conduction Only . . . . . . . . . . . . . . . 173 9.3.4 Case D: Heating and Suppression of Conduction . . . . . . . . . . . 174 9.3.5 Comparing Cases A-D . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10 Concluding Remarks 180 10.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 10.1.1 Hard X-ray Observations . . . . . . . . . . . . . . . . . . . . . . . . 180 10.1.2 Combined Fokker-Planck and Hydrodynamic Modeling. . . . . . . . 183 10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Appendices 187 vii A RHESSI Data Analysis Tools 187 A.1 Imaging Spectroscopy Flow Chart . . . . . . . . . . . . . . . . . . . . . . . 187 A.2 Notes for Imaging Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 190 A.3 Spectral Analysis for 2002-04-30 M1.4 Flare . . . . . . . . . . . . . . . . . . 192 A.3.1 Spatially Integrated Spectra . . . . . . . . . . . . . . . . . . . . . . . 192 A.3.2 Spatially Resolved (Imaged) Spectra . . . . . . . . . . . . . . . . . . 195 A.4 Efiects of Pulse Pileup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 A.4.1 Pileup Efiects for 2003-11-13 M1.7 Flare . . . . . . . . . . . . . . . . 197 A.4.2 Pileup Efiects on Imaging Spectroscopy for 2003-10-29 X10 Flare . . 198 A.5 RHESSI Simulation Tool and Its Applications . . . . . . . . . . . . . . . . . 200 B Notes for Analyzing 2003-10-29 X10 Flare 202 B.1 Coalignment of Images from Difierent Instruments . . . . . . . . . . . . . . 202 B.2 Derivation of Footpoint Fluxes from Asymmetric Column Densities . . . . . 204 B.3 Estimation of Column Densities in Loop Legs . . . . . . . . . . . . . . . . . 205 C Coulomb Loss and Difiusion in Warm Plasmas 208 C.1 Coulomb Loss in Warm Plasmas . . . . . . . . . . . . . . . . . . . . . . . . 208 C.2 Coulomb Difiusion in Warm Plasmas . . . . . . . . . . . . . . . . . . . . . . 210 C.3 Implementation of Coulomb Loss and Difiusion . . . . . . . . . . . . . . . . 211 C.4 Thermalization Test of Injected Distribution . . . . . . . . . . . . . . . . . . 214 List of 215 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Bibliography 219 Index 227 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 viii Preface It is well-known that the Sun is vital to the Earth and human beings because it supplies all the energy we need to survive. Another role that the Sun plays had escaped our attention until recent decades and the advent of space exploration. The Sun not only afiects the terrestrialclimate,butitalsocontrolstheconditionsinspace,theso-called\spaceweather", through solar activity. Solar (cid:176)ares, discovered in 1859, are one of the most spectacular phenomenaofsolaractivity. Theyarenaturalacceleratorsthatcanboostparticlestonearly the speed of light. These energetic particles, when arriving in near-earth space, can damage satellites and do harm to astronauts. Solar (cid:176)ares have thus stirred renewed interest of solar and space physicists. They provide a unique laboratory for studying particle acceleration mechanisms in general and investigating solar activity for space weather forecast purposes in particular. Understanding solar (cid:176)ares has other far-reaching implications, and can shed lighton(cid:176)aresoccurringelsewhereintheuniverse, suchasthoseonotherstarsandaccretion disks and near black holes. A rich literature exists describing various aspects of solar (cid:176)ares. This includes sev- eral (cid:176)are-dedicated books: Solar Flares by S•vestka (1976), The Physics of Solar Flares by Tandberg-Hanssen & Emslie (1988), and Particle Acceleration and Kinematics in Solar Flares by Aschwanden (2002), and a few space mission motivated conference proceedings: Solar Flares { A Monograph from Skylab Solar Workshop II edited by Sturrock (1980), Energetic Phenomena on the Sun { The Solar Maximum Mission Flare Workshop Proceed- ings edited by Kundu & Woodgate (1986), and the upcoming Solar Flares at High Energy { A RHESSI-inspired Monograph edited by Dennis, Emslie, Hudson, & Lin (2008). The comprehensive textbook Physics of the Solar Corona by Aschwanden (2004) also includes extensive material on solar (cid:176)ares. Advances in our knowledge of solar (cid:176)ares have been driven by multiwavelength obser- vations obtained by space-borne and ground-based instruments over decades, particularly hard X-rays (HXRs) recorded by Solar Maximum Mission (SMM), Hinotori, Yohkoh, and Compton Gamma Ray Observatory (CGRO). In February 2002 NASA’s Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) was launched. Unprecedented data poured in and new physics waited to be discovered. It was RHESSI’s scientiflc promise that motivated me to devote my PhD research to high-energy physics of solar (cid:176)ares. This led to the production of the materials presented in this work, which includes primarily my disser- tation completed in late 2006 at Stanford University. In early 2008, after being approached by the German publisher Verlag Dr. Mu˜ller who proposed to publish my dissertation as a monograph, I made necessary revisions (Chapters 4 and 5) and additions (Appendices) based on my postdoctoral research at NASA Goddard Space Flight Center. ix

Description:
Solar flares, which have significant space weather consequences, are natural particle accelerators and one of the most spectacular phenomena of solar activity. RHESSI is the most advanced solar X-ray and gamma-ray mission ever flown and has opened a new era in solar flare research following its laun
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.