. i- Lib of Congrefl nC aPtuablloigciantgi oIn Dato CL ASIF Green,a rMi tn A. Solar cells. ADQUIS• ele(cPtrren icoten-iHcalsl} serie dis t saitne s oplhysical FECHA Bpi.b liograp: hy PROCED. 21..I nPchluoidtnSedoosxel v.a orl ctealilcs. power eeneratlon. hn,O-.o1�· - ISBN 0·13·822s2e7r01·e3s .s2u1'8A214A-4C4 R3526 To Judy and Brie CONTENTS Editorial/production supervoirs dieosni gann:d interi BARBARA BERNSTEIN Manufacluring buyer: JoYCE LEVATINO e 9182 by Prentice-Hall, Incl.i,r rEsng,l eNw.oJo.d 0C7632 PREFACE xiii All rigehstesr vred. No part of this book may be reprodunc eadn yi form or by nay means without. permission in writing Chapter 1S.O LAR CELLS AND SUNLIGHT 1 from the publisher. 1.1 Introduction 1.2 Outline of Solar Cell De2v elopment Printed in the Unsi toefd ASmteartieca 1.3 Physical Source of S2u nlight 10 9 8 7 6 6 4 3 2 1 1.4 The Solar Const4a nt 1.5 Solar Intensity at the Ear5t h's Surface 1.6 Direct and Diffuse Rad6i ation 1. 1 Apparent Motion of th8e Sun 1.8 Solar lnsolation8 Data 1.9 Summary 9 PRENTICE-HALL INTERNATIONAL, INC., London PRENTICE-HALL oF AusTRAUA PyTd.n eLyI ITED, S 1 h.1pterR E2V.I EW OF SEMICONDUCTOR PROPERTIES 13 PRENTICE-HALL OF CANADA,. oL To., Toron PRENTICE-HAFL LI NODIA PRIVIATTEED ,L INew Delhi 2.1 Introductio1n3 PRENTICE-HALL OF JAPAN, INC., Tokyo 2.2 Crystal uSrter uacntd Orientat1i4o ns PRENTICE-HALL OF SouTHEASLTT DA.s,iI nASg aPproEr.e WmTEHALLS BLoIoITED, Wellin getaolna,n dN e 2.3 Forbidden Energy Gaps 17 v vi o11 11 I Contents ii 2.4 lroh,1brli1y of Occupation of Allowed hapter p·nJ UNCTION DIODES 62 f 4. Stt1t $ 18 2.& h·ctrons and Holes 20 4.1 Introduction 62 I 4.2 Electrostatics of Junctions 63 Dynamics of Electrons and Holes 21 p-n 2.G 4.3 Junction Capacitance 67 2.7 Energy Density of Allowed States 23 4.4 Carrier Injection 2.8 Densities of Electrons and Holes 24 68 4.5 Diffusive Flow in Quasi-Neutral 2.9 Bond Model of a Group IV Regions 70 Semiconductor 26 4.6 Dark Characteristics 72 4.6. 1 2.10 Group Ill and V Dopants 28 2.11 Minority Canr riers i Carrier Densities 30 Quasi-Neutral Regions, 72 2.12 Location of Fermi Level in Doped 4.6.2 Minority-Carrier Currents, 74 Semiconductors 32 4.7 Illuminated Characteristics 76 2.13 Effect of Other Types of Impurities 33 4.8 Solar Cell Output Parameters 79 2 .14 Carrier Transport 34 4.9 Effect of Finite Cell Dimensions 2.14.1 Drift, 34 2.14.2 Diffusion, 36 on 10 81 2.15 Summary 37 4.10 Summary 82 Chapter 5. EFFICIENCY LIMITS, LOSSES, Chapter 3. GENERATION, RECOMBINATION, AND AND MEASUREMENT 85 THE BASIC EQUATIONS OF DEVICE PHYSICS 40 5.1 Introduction 85 3.1 Introduction 40 5.2 Efficiency Limits 85 3.2 Interaction of Light with 5.2. 1 General, 85 Semiconductor 40 5.2.2 Short-Circuit Current, 86 3.3 Absorption of Light 43 5.2.3 Open-Circoulitta gVe and 3.3. Direct-Band-Gap 1 Efficiency, 86 Semiconductor, 5.2.4 Effiiecncy Limits for 43 3.3.2 Black-Boedlyl sC, 90 IndirSeecmti-cBoannddu-cGtaopr , 45 5.3 Effect of Temperature 91 3.3.3 Other Absorption Processes, 47 5.4 Efficiency Losses 92 5.4.1 3.4 Recombination Processes 50 General, 92 3.4. 1 Relaxation itbor 50E iqmuu,i l 5.4.2 Short-Circuit Current 3.4.2 Radiative Recombination, 50 Losses, 92 3.4.3 Auger Recombination, 52 5.4.3 Open-Circuit Voltage 3.4.4 Recombination through Traps, 53 Losses, 93 3.4.5 Recombination at 5S5 urfaces, 5.4.4 Factor Losses, 96 3.5 Basic Equations of Semiconductor-Device ll 5.5 Efficiency Measurement 98 Physics 56 5.6 Summary 101 3.5.1 Introduction, 56 3.5.2 Poisson's 5E6q iunoa,t Cl111pter 6. STANDARD SILICON SOLAR CELL 3.5.3 Current Density Equations, 57 TECHNOLOGY 103 3.5.4 Continuity Equations, 57 3.5.5 Equatioent ,S 58 6. 1 Introduction 103 3.6 Summary 59 6.2 Sand to Metallurgical Grade Silicon 105 viii Contents Co e s nt nt ix 6.3 Metallurgical-Grade Silicon to 8.7 Optical Design 161 Semiconductor-Grade Silicon 106 8.7.1 Antireflection Coating, 161 6.4 Semiconductor-Grade Polysilicon to 8.7.2 Textured Surfaces, 164 Single-Crystal Wafers 107 8.8 Spectral Response 165 6.5 Single-Crystal Wafers to Solar Cells 108 8.9 Summary 167 6.6 Solar Cells to Solar Cell Modules 111 6.6.1 Module Construction. 111 6.6.2 Cell Operating Chnpter OTHER DEVICE STRUCTURES 170 9. Temperature, 113 9.1 Introduction 170 6.6.3 Module Durability, 7 74 9.2 Homojunctions 170 6.6.4 Module Circuit Design. 715 6.7 Energy Accounting 117 9.3 Semiconductor Heterojunctions 172 9.4 Metal-Semiconductor 6.8 Summary 119 Heterojunctions 175 Chapter 7. IMPROVED SILICON CELL TECHNOLOGY 121 9.5 Practical Low-Resistance Contacts 177 9.6 MIS Solar Cells 178 7.1 Introduction 121 9.7 Photoelectrochemical Cells 181 7.2 Solar-Grade Silicon 121 9.7.1 Semiconductor-Liquid 7. 3 Silicon Sheet 123 Heterojunctions, 181 7.3.1 Sheet Requirements, 123 9.7.2 Electrochemical Photovoltaic 7.3.2 Ingot Technologies, 123 Cells, 181 7.3.3 Ribbon Silicon, 124 9.7.3 Photoelectrolysis Cell, 183 7.4 Cell Fabrication and 9.8 Summary 183 Interconnection 127 7 .5 Analysis of Candidate Factories 131 7.6 Summary 135 1 h.1pter 10. OTHER SEMICONDUCTOR MATERIALS 187 10.1 Introduction 187 Chapter 8. DESIGN OF SILICON SOLAR CELLS 138 10.2 Polycrystalline Silicon 187 10.3 Amorphous Silicon 190 8.1 Introduction 138 10.4 Gallium Arsenide Solar Cells 192 8.2 Major Considerations 138 10.4. 7 Properties of GaAs, 792 8.2. 1 Collection Probability of 10.4.2 GaAs Homojunctions, 193 Generated Carriers. 138 10.4.3 Ga1-xAlxAs/GaAs Heteroface 8.2.2 Junction Dept/1, 143 Cells, 194 8.2.3 Lateral Resistance of 10.4.4 AIAs/GaAs Heterojunctions, Top Layer, 145 196 8.3 Doping of the Substrate 147 10.5 Cu2S/CdS Solar Cells 196 8.4 Back Surface Fields 149 8.5 Top-Layer Limitations 150 I 10.5.1 Cell Structure, 196 10.5.2 Operating Characteristics, 8.5.1 Dead Layers, 150 f 197 8.5.2 High-Doping Effects, 751 10.5.3 Advantages and 8.5.3 Contribution to Saturation Disadvantages of Cu:zS/CdS Current Density. 753 Cells, 799 Top.Contact Design 153 8.6 10.6 Summary 200 Contents Contents xi x Chapter 11. CONCENTRATING SYSTEMS 204 1,h111>ter 14. RESIDENTIAL AND CENTRALIZED PHOTOVOLTAIC POWER SYSTEMS 11. 1 Introduction 204 249 11. 2 Ideal Concentrators 205 14.1 Introduction 249 11.3 Stationary and Periodically Adjusted 14.2 Residential Systems 250 Concentrators 206 14.2.1 Storage Options, 250 11 .4 Tracking Concentrators 208 14.2.2 Module Mounting, 252 11. 5 Concentrator Cell Design 209 14.2.3 Thermal Generation, 252 11 .6 U ltra-H igh-Etticiency Systems 213 14.2.4 System Configurations, 254 11.6.1 General, 213 14.2.5 Demonstration Program, 254 11.6.2 Multigap-Cell Concepts, 213 14.3 Central Power Plants 256 11.6.3 Thermophorovoltaic 14.3.1 General Considerations, 256 Conversion, 217 14.3.2 Operating Mode, 258 11.7 Summary 219 14.3.3 Satellite Solar Power Stations, 262 14.4 Summary 263 Chapter 12. PHOTOVOLTAIC SYSTEMS: COMPONENTS AND APPLICATIONS 222 Appendix A PHYSICAL CONST ANTS 265 12.1 Introduction 222 Appendix B SELECTED PROPERTIES OF SILICON 266 12.2 Energy Storage 223 12.2.1 Electrochemical l\1lpendix C LIST OF SYMBOLS 267 Batteries. 223 12.2.2 Large-Capacity Approaches, BIBLIOGRAPHY 269 225 12.3 Power Conditioning Equipment 226 INDEX 270 12.4 Photovoltaic Applications 227 12.5 Summary 228 Chapter 13. DESIGN OF STAND-ALONE SYSTEMS 230 13.1 Introduction 230 13.2 Solar Module Performance 230 13.3 Battery Performance 232 13.3.1 Performance Requirements, 232 13.3.2 Lead-Acid Batteries. 232 13.3.3 Nickel-Cadmium Batteries, 235 13.4 Power Control 235 13.5 System Sizing 237 13.6 Water Pumping 246 13.7 Summary 247 "" ""'""' PREFJ\CE T1nvceta0nooahcetl uisttcrera g dmgtgsyes,re o .ii dslytoqa Urarcuo p ofancaprn Mbede"'alvoe lreoar uer i stnnttbos dtr!rm i ohto ghValenhader tl, eey tIe os nanfau nrc eanfo.drnrs)mg ha aycei n sltaoeiee ocfc,t n thotrt ihnhioncedef a w plcac ho laemolonflaet itdrlocal ancicomntsor a neistnttunh e tpteerhhc p testelh eey riimd ncea akcbi cric.e d ooutWenfwrn drtheethueen lcennit tgc ootthehrhfl..,t l ee u.si ni cmpl(tieP coetolhotl aeoni lsl3t,le oi iccAlaglt burrc aoaimoctpuna ihat·l· WrIl111l1 11 11r11l1 1 c1I1lr111>1 •1o11y 1l111l 1 •'r11p•w1t I\1•l1 w• 11r11v11 i rrnn11fii1 •cy 1'1 ,"n�1u1sn io oto1w·r fpl l 1'r1snunln 1dT wl1aco cl<"y1ekrni;1btyhhlt'ula•nr•o'sc l.ed peloe1o icifr1· vnrpeoil lra1il li stbn o mitnapl ptFneil1wg1m ssolra<rlrcdltra hgc no1th1pm.to\ n•iiosel•oro tecv1•wirta rkp fdtbwbos ct c drie czo toi rr h eupnrnouiprcivaaefktwooLep tte,aaincc lndnctencnr weiphmsrshci flcteibeco gdrodediostefc eoteoomwt edht efs e na l a d hr r dsnsolo neayia lsmltlaeotou seratrtsoct ncliasw ncuiamca e wlrhrife gtAsrd todatesne e alohde aeg l octo.eeim d siuydnttan i tnllrhcmf cracpe mn ep hb e cse,iseoe eanairsiplrtreoso hmn rcinutnli,omtoigoh rl de dhntfiilc ffphrgyveaaethniacclcaotwyieo reth inr tmetnnieyceTnih smr otatcde ioa gids ltlhastre p vfenu,dianrnaecl.mlulel eheorterootrt fenr ydnnayro srsl nelrethtrdfr ieusge s etl,ve ptci,ye eth eee ocdtc a.x er ohn rvaec ssheurr grtmongeganhytptcinirsissilo ecvs yncnr ertToosepiyoncyunhtit teoicohyul .tsg looo tpardoh l ahpi,lo itnsrafonc upifempolsenes wfdgoe ord fvtectn o ag olco roo ymn oe ehlategTlyklehlturos ssontrentlhbe rhl ueaccaoli f. if ht odssadadstteuts rt epdgae gbe e o ivis, hrthhe r ltylsnesdfge· ieieediel e e - c n c sr ga,s l xiii xiv Preface cunent �echnology for fabricating them, and probable technological Ch1apte r developments in the future. The final chapters deal with system ap plications, ranging from the small systems commercially available at present to residential and central power systems that may be avail able in the future. The book is intended primarily for the increasing numbers of engineers and scientists attracted to this rapidly expanding field. As such, it is suitable for use as a textbook for both undergraduate and graduate courses. deliberate attempt has been made not to exclude A the material contained within from those readers who entering are the field through a different route. For example, a rather pictorial review of the properties of semiconductors relevant to the under standing of solar cell operation is included. Although this may serve SOLAR CELLS as a quick review for many readers, for other readers it may provide a framework on which the material in subsequent chapters can be AND SUNLIGHT supported. Irrespective of background, working through the text and associated exercises would place the reader in a very strong posi tion for future activity in this area. I would like to acknowledge the large number of people, too numerous to mention individually, who have stimulated my interest in solar cells over the last decade. I would particularly like to thank Andy Blakers, Bruce Godfrey, Phill Hart, and Mike Willison for their suggestions and indirect encouragement in this venture. Special thanks are due to Gelly Galang for her help in preparing the manu script and to John Todd and Mike Willison for preparing photographs incorporated into the text. Finally, I would like to thank Judy Green 1,1 INTRODUCTION for her support and encouragement during the fairly intense period l'.lular cells operate by converting sunlight directly into electricity us- in which this book was developed. 1111{ the electronic properties of a class of material known as semicon- Martin A. Green u<'tors. In the following chapters, this elegant energy-conversion 1 111u cess will be examined starting from the basic physical principles solar cell operation. From this basis, the mathematical equations ol quantifying the energy transformation are developed. This is followed I•\. a description of the technology used to produce present commercial cells, based predominantly on a particular semiconductor, silicon. •I 111ptrro vements in this technology, as well as alternative technologies I hold the promise of significantly lower cost, are then described. l111d 11111 lly, Che design of solar cell systems is discussed, ranging from I• 1111111 power supplies for remote-area use to possible future residential 1111 <'Pntral power-generating plants. I In this chapter, the history of solar cell development is out- 11111•<1 hridly, followed by a review of the properties of the sun and ultulion. It 1 1 1.2 OUTLINE OF SOLAR CELL DEVELOPMENT 1.0 e Solar cells depend upon the photovoltaic effect for their operation. � N This effect was reported init.ially in 1839 by Becquerel, who observed E 0.8 � a light-dependent voltage bet.ween electrodes immersed in an elec '!. trolyte. lt was observed in an all-solid-state system in 1876 for the = of selenium. This was followed by the development of photo 1;� 0.6 case 8. cells based on both this material and cuprous oxide. Although a .. • silicon cell was reported in 1941, it was not until 1954 that the fore runner of present silicon cells was announced. Thisdevicerepresented ·..::I:!:e 0.4 a major development because it was the first photovoltaic structure ] 3000 K (lOX) that converted light to electricity with reasonable efficiency. These ·.t:...;: : 0.2 e- cells found application as power sources in spacecraft as early as ·e .. 1958. By the early 1960s, the design of cells for space use had stabi :I: 0 lized, and over the next decade, this was their major application. Ref 0 1.0 1.S 2.S erence 1.1 is a good source of more detailed material up to this stage. Wavelength (µm) 3.0 The early 1970s saw an innovative period in silicon cell de Figure 1.1. Planckian black-body radiation distributions velopment, with marked increases in realizable energy-conversion for different black-body temperatures. efficiencies. At about the same time, there was a reawakening of interest in terrestrial use of these devices. By the end of the 1970s, radiation emitted increase, but the wavelength of peak emission de the volume of cells produced for terrestrial use had completely out creases. example of thi.s within most of our ranges of experience An stripped that for space use. This increase in production volume was that metal, when heated-, glows red and then yellow as it gets 1s accompanied by a significant reduction in solar cell costs. The early hotter. 1980s saw newer device technologies being evaluated at the pilot Temperatures near the sun's center are estimated to reach a production stage, poised to enable further reduction in costs over warm 20,000,000 K. However, this is not the temperature that de the coming decade. With such cost reductions, a continual expan termines the characteristic electromagnetic radiation emission from sion of the range of commercial applications is ensured for this ap the sun. Most of the intense radiation from the sun's deep interior is proach to utilizing the sun's energy. absorbed by a layer of negative hydrogen ions near the sun's surface. Region of fusion reaction, H • He 1.3 PHYSICAL SOURCE OF SUNLIGHT �Absorption by Radiant energy from the sun is vital for life on our planet. It deter H ions mines the surface temperature of the earth as well as supplying virtually the energy for naiural processes both on its surface and -Convective heat transfer all in the atmosphere. The sun is essentially a sphere of gas heated by a nuclear fusion reaction at its center. Hot bodies emit electromagnetic radiation with a wavelength or spectral distribution determined by the body's tem perature. For a perfectly absorbing or "black" body, the spectral Photosphere distribution of the emitted radiation is given by Planck's radiation law (Ref. 1.2). As indicated in Fig. 1.1, this law indicates that as a body is heated, not only does the total energy of the electromagnetic Figure 1.2. Principal features oft.he sun. 2 3 4 Solar Cells and Sunlight Chap. Sect. Solar Intensity at the Earth's Surface 5 1 1.5 These ions act as continuous absorbers over a great range of wave The presently accepted value of the solar constant in photo lengths. The accumulation of heat in this layer sets up convective voltaic work is 1. 353 kW/m2• This value has been determined by currents that transport the excess energy through the optical barrier laking a weighted average of measurements made by equipment (Fig. 1.2). Once through most of this layer, the energy reradiated mounted on balloons, high-altitude aircraft, and spacecraft (Ref. is into the relatively transparent gases above. The sharply defined level 1,3). indicated by the two uppermost curves in Fig. 1.3, the As where convective transport gives way to radiation is known as the 1pectral distribution of AMO radiation differs from that of an ideal photosphere. Temperatures within the photosphere are much cooler hlack body. This is due to such effects as differing transm.issivity of than at the sun's interior but are still a very high 6000 K. The photo Ih e sun's atmosphere at different wavelengths. Currently accepted sphere radiates an essentially continuous spectrum of electromagnetic values for this distribution are tabulated in Ref. 1.3. A knowledge radiation closely approximating that expected from a black body at of the exact distribution of the energy content in sunlight is impor this temperature. tant in solar cell work because these cells respond differently to cliCTerent wavelengths of light. 1.4 THE SOLAR CONSTANT 1.5 SOLAR INTENSITY AT THE EARTH'S The radiant power per unit area perpendicular to the direction of the SURFACE sun outside the earth's atmosphere but at the mean earth-sun distance is essentially constant. This radiation intensity is referred to as the Sunlight is attenuated by at least 30% during its passage through the solar constant or, alternatively, air mass zero (AMO) radiation, for Parth's atmosphere. Causes of such attenuation are (Ref. 1.4): reasons that will soon become apparent. 1. Rayleigh scattering or scattering by molecules in the 2.5 atmosphere. This mechanism attenuates sunlight at all wavelengths but is most effective at short wavelengths. 2. Scattering by aerosols and dust particles. 2.0 e 3. Absorption by the atmosphere and its constituent gases � oxygen, ozone, water vapor, and carbon dioxide, in N particular . ._E � 1 5 e. A typical spectral distribution of sunlight reaching the earth's .2c i;urface is shown by the lower curve of Fig. 1.3, which also indicates ] 'E 1.0 the absorption bands associated with molecular absorption . .� The degree of attenuation is highly variable. The most im .,�, portant parameter determining the total incident power under clear "'c 0.5 "onditions is the length of the light path through the atmosphere. w l'his is shortest when the sun is directly overhead. The ratio of any 111-lual path length this minimum value is known as the optical air to When the sun is directly overhead, the optical air mass is unity muss. 1111cl the radiation is described as air mass one (AMl) radiation. When Wavelength (µm) I he :;un is an angle overhead, the air mass is given by 0 to Figure Spectral distribution of sunlight. Shown are 1.3. the cases of AMO and AMl.5 radiation together with the 1 radiation distribution expected from the sun if it were a Air mass= (1.1) black body at 6000K. -cose 6 Solar Cells and Sunlight Chap. 1 lAenMg2th. oTlf l l(H•w1w1 c·1 1•li.a,hs uiw1d·slotw wnw sa Lych aest to s bueyns t aii msv ea6rt0tei° c tahol efsf t airrouvc etmurhraees asod fi, s h ttehoige h mrta ehda.is auTtrieho netn his e (1.2) Fcleoingng.s t1tha.s3n, tWbw, eitictLhhoh em i naietcnntrgeee naregsuviyeann tgir omeanaiorc irhnmei nsatgehs vse et brhvueiec.t i ewnaiitrtythh oo ifts h teahrte ta eatnmbusoaotsreppdht ieoarntic abvlaal nrwidasab vloeefs dsivATtscnmscroetpoaclaianlatabhmoltnhsnelaler idoedcptiprsc yaue eoo1t rs u,gaspr.id ih1tnpsHoart e t ,hd oficert eo saaagrlhdrndoonlsreeisc asd.ffs to eemttas o , herispta tTr i aaboautleootaosl e an f t t sttdot thatunlighhsith lepeoetsheleafd oopn emi n lwon t taaidiUosasesrm ae xd t im.ttcdrnaSie hdamelv e .a nel taaoplg u osdrstinfoontmi e tiemavtwr newsh ter1sg reeeeregrrt9efar nsieo uc tst7sedmfdieluri7na tifeaireavct uglnetlnuleo( a ym sdRdctxmiti s,ui tib,ee foapy trtnfoftthnvh ae.htt c eir rtehsse1ooi he ir s m ndn.nueieoA5n i tttfonFse) ese Mlist. aiiornn trbdgrrIc itt.tweeeb T ae.h1t d5iutnitws'h.d isth3t soe die1eoie.son tl eiu yytslnIsknearhtn , ,aW rfaut ia teiattrsnsb hethts /cesdhemsureeetd er 's .at ps2 rnpppint eoh,taoeeeds niotrrcwwtaafrm ttrlroeeraooildyasoarrsf. l l <I·�,.,I 1.6 DIRECT ANO DIFFUSE RADIATION zccfaToaaothncmnmet. to a patccslho opcsnamhouteeu,rnp rfnataiosc.tc s weifst oEciedoralvu lnt e1rta nie0osn r fgtiit n hnottge eh c r2ecrgl 0eoeidv3asmateryr ,spo i .aocf rl nli ostseehuun edntt loltoeio gsfhats ar tal ss dikirsgniia aefdtsuifi,irao ictttnhaiho neednrt i rdcreioiencfmcdtfeluiyprisv elefriecc dtcoa otmobemryd t p dhaboi efhyn fso euutrnhsniete, agbctwoz(eboeeRonnioittlvn eawelue wftlrbt de.aa h reel l1o alin oycs.ndd 6Fnuh iiet)ra fo w-h,affthtr au eiith aolcch sllellenee efser s. u beat fsorhn reo eTf,ian s1s c 1udth ysceo uani iiilwfsv sennfa n eainudwynndorsyi d-g itfed dlaf i.ldsasua bct abyysllauoyeePe str p u ,ioga lsta daoettrdttchyiunr iock ate eea hwt ,erlo ioeaxp oeitrn lfnetanl seryre tsa e-cghn uitmmiesehednn nneriesrscr te sehrdactwr ceiigaa mnmaeienltlise,h lve ee, bfooane s nomtd.eft o r fi ,dwoo Fr ttadai snhrhsbtodaoecei oyincdemo ahsuyrl ft yn et aioootw aebnb5hcrndoo.a s0e. wveuu o 3erFrlsFnhvad, eo ioeod cwradbrfis h a o dhedhthis td maetioaraohyryerteenseias 7 8 Solar Cells and Sunlight Chap. 1 regioonfs worltdo r eceilvoew l eveolfss olarra diatbiuotnw ill Llw alscoa uNaP s 1g11ifpircoapnotr toifoi ntt ob ed iffuse. l>1ffsuusnt•l igghetn erahlalsay differsepnetc tcroamlp osition fromd irt•sc·utn.l ighGte.n eraliltyw ,i lble richeirnt hes hortoerr "blm"w'a v1•l1,ngtghisv,i nrgi steo f urthvearr iabiilnit thyes pectral composilu1f0l ni ghrte ceivbeyd a solacre lsly stemU.n certaiinnt y thed islrihuolfid oinf fursaed iatfiroonm d ifferdeinrte ctiionnt sh e skyi ntrucloutch1'eSur n certainwLhiecncs a lculartaidniga tlicovnd s on inclitwsuu rfacferso md atag <'ncralrleyc ordeodn horizontal surfacc•As .c ommon assumpLiiosnL hatd iffulsieg hitsi sotropic (unifoirnma ldli rectioanlst)h,o ulghhc r egioonft hes kys urround ingt hes uni st hem osti ntenssol'u r•co <ft hirsa diation. Equinox/ Ohbosmervoenr 's Photovoltasiycs tehmsa scodn c orl<'<'llirsautneldi gchatng en eralolnyl ya cceprta yssp annian lgi mit<•rdu n•f.{o cfa ngleHse.n cet,h ey usualhlayv et ot ractkh es unt ou tilitwh ec lirt'c<o'mtp onenotfs un lighwti,t ht hed iffucsoem ponenwta sted'.l 'hti<sm dtso o ffstehte Summer Observer\ f acing south advantaggaei nebdy sucht rackisnygs teomfsi ntercepmta.xiinmgu m sol slice powerd ensibtyya lwaybse inngo rmatlo t hes un'rsa ys. •declination of the earth 23 27' 6 = Figure 1.4. Apparenl motion of the sun relative to a 1.7 APPARENT MOTION OF THE SUN fixed observer at latitude in the northern hemisphere. 35° The path of the sun shown at the equinoxes and lhe is summer and winter solstices. The position oC the sun Thee artshp indsa iloyn a ni maginaarxyio sr ientaitnea df ixeddi rec shown at solar noon on each of these days. The shadeisd tionr elattiovt eh ep lanoef t hee arthy'<'sa rloyr biatb outth es un. circles represent the sun's position 3 h berore and after solar noon. Thea nglteh idsi rectmiaokne sw iiht heo rbitpalla niest hes oladre clinat(i23o°n2 7' ). Perhaplse sfsa milairaert hed etaiolfts h ea ppar entm otioonf t hes unr elattiova e f ixeodb servoenre artrhe sulting selectfeodri nstallatNiootno .n lyw ouldd atao n thed irecatn d fromt her elationdsehsilp" ratbhorvd e. diffucsoem ponenotfsl ighbte d esirabbluetd, a tao nc orresponding Thiasp parenmto tio1ns i ndicaitneF di g1..4 fora no bserver ambientte mperatuarsew se lals w inds peeadn dd irectcioounl bde atl atitu35d en orthO.n anyg ivedna yt,h ep lanoef t hes un'asp par ° usedt oa dvantagAel.t hougthh eraer es tatioantvs a rioluosc ations ento rbilti east a na ngleeq uatlo t hel atitufdreo mt heo bserver's .U"ountdh ew orltdh adto m onitoarl tlh espea rameteprrse,s eencto n verticAatl .t hee quinox(eMsa rc2h1 andS eptemb2e3r) , thes un omiefsa votrh eu seo fp hotovolstayisct eimsnr emotree gioonfst he risedsu ee asatn ds etdsu ew ests,o t hatth ea ltituodfte h es una t worlwdh eriet i su nliketlhyas tu cihn formatiisao vna ilable. solanro ono n thesdea yse qual9s0° minust hel atitudAet. t he Thea vailaibnlseo lataitoa ng ivelno catidoenp endnso to nly summera ndw intesro lsti(cJeusn2 e1 andD ecembe2r2, respectively, grosgse ographicfaela turseusc ha sl atituadlet,i tucdlei,m atic •111 fort hen orthehrne misphetrhee,o pposiftoer t hes outhernt)h,e l"lussifiacnadtp iroenv,a ilviengge tatbiuotni ,ta lsdoe pendsst rongly altituadtse o lanro onh asi ncreaosredd e creasbeyd t hed eclination 11polno cagle ographfiecaatlu reAsl.t houguhn ablteo i ncorporate oft hee art(2h3 °27'). r h 11 lattfeera turmeasp,s o fs olairn solatdiiosnt ribuatrieoa nv ail 1hf ord ifferpeanrtt osf t hew orldT.h eshea veu sualbleye np re- ii 11•1 1 by combinimnega sureidn solatdiaotnaw ithd atae stimated l'Ci 1.8 SOLAR INSOLATION DATA f111am l argnee tworokf s tatioanrso untdh ew orlmdo nitorihnogu rs 11111 11nshinc. Thei deasli tuatfioornt h ed esigno fp hotovolstyaisct emwso uldb e 'l'ihncf ormatmioosnt g eneraalvlayi laibslt ehe a veradgaei ly whent herwee red etailreedc orodfst hes olairn solataitot nh es ite or on horizonstuarlf acAe w.i deluyse d source 1111 11 J!lo/Jal racliatum a 9