ebook img

Soil Health on the Farm, Ranch, and in the Garden PDF

378 Pages·2020·13.719 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Soil Health on the Farm, Ranch, and in the Garden

Kenneth E. Spaeth Jr. Soil Health on the Farm, Ranch, and in the Garden Soil Health on the Farm, Ranch, and in the Garden Kenneth E. Spaeth Jr. Soil Health on the Farm, Ranch, and in the Garden Kenneth E. Spaeth Jr. Hayley Drive Weatherford, TX, USA ISBN 978-3-030-40397-3 ISBN 978-3-030-40398-0 (eBook) https://doi.org/10.1007/978-3-030-40398-0 © Springer Nature Switzerland AG 2020 All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface Soil health is undoubtedly a “hot topic” in agriculture; although not a new idea, the resurgence of soil health principles is producing positive results throughout the agri- cultural community with emphasis on cultural acceptance, improving hydrology and reducing erosion, planting cover crops, and restoring and maintaining soil organic matter, microbial populations, fertility, and soil physical properties. Soil health is a concept that is important across all land uses, including cropland, range- land, pastureland, forestland, and garden environments. Why write a book on soil health? As a scientist and conservation agent, this is the book I want as a reference to quickly obtain information on a myriad of soil health subjects. This book is not intended as a comprehensive textbook; the content of the material would need to be greatly expanded in size, scope, and content; however, Soil Health on the Farm, Ranch, and in the Garden can augment the study of soil health in the college cur- riculum and/or provide reference material for use in practical situations (teaching, use by landowners, managers, and professional agents). The objectives of this book are 1) to convey a conceptual framework i.e., ecological site concept, which can serve as a reference for  soil health attributes, 2) clarify the aspects of how environ- mental variables interact with the biotic and abiotic factors in the ecosystem; 3) differentiate soil health dynamics between different land uses (cropland vs. grazing- lands), 4) highlight the importance of hydrology and hydrologic function with soil health, 5) present examples of how cover crops and natural vegetation protect the soil surface and, after decomposition become organic matter, 6) display and discuss the organic matter cycle perceptions from several authors; and provide some realis- tic examples of organic matter development in the soil, and 7) present some con- cepts that are useful in assessing soil health on site for cropland, pastureland, rangeland, and gardens. There are many viewpoints as to the definition of soil health and what constitutes soil health in the field. Chapter 1 provides a historical context of taming the land and current definitions of soil quality and health. Before soil health can be ascertained on the local field level, an understanding of the ecological site is imperative so that baselines can be established as to site and soil potential (Chap. 2). Ecological sites are dynamic and unique across the landscape, and awareness and use of ecological v vi Preface site descriptions on the lands we live on or manage, i.e., in a farm, ranch, or garden setting, is the first step in maintaining soil health and continued prosperity of any agricultural endeavor. State and transition models and narratives associated with ecological sites are the culmination of a collection of knowledge about ecosystem dynamics and changes in response to natural events and management applications. There are many inherent environmental variables associated with soil health. The interactions between climate, soil physical and chemical properties, and historic plant community and existing plant composition, soil flora and fauna, hydrology, and past and current management are complex and dynamic. When one considers the most limiting factor in terrestrial environments, i.e., “water,” it should be no surprise that hydrology is related to almost every aspect of terrestrial ecosystems. The hydrologic cycle and its function are integral to the health of the soil. Soil health is dependent on proper hydrologic function; organic matter cycling cannot proceed without water and associated hydrologic dynamics. Hydrology and interac- tions with agricultural land use are covered in detail in Chaps. 3, 4, and 5. Organic matter is the core of soil health as it is involved in many environmental processes related to atmospheric carbon, climate, soil, plants, and microorganisms. The soil organic matter and carbon cycle are important aspects of understanding the interactions of abiotic and biotic variables in the environment. Why Chap. 6 heading “Organic Matter: The Whole Truth and Nothing but the Truth”? There are many misconceptions and exaggerations regarding the organic matter and soil health. This chapter is intended to provide the reader with a relevant collection of reference material. The final chapter, “Soil-Hydrology-Plant Assessment Technologies for Cropland, Rangeland, Pastureland, and Gardens,” provides a summary of some of the “state- of- the-art” assessment technologies. One novel approach in Chap. 7 encourages the customization of visual land assessments in cropland, grazingland, and garden set- tings to address local concerns. Weatherford, TX, USA Kenneth E. Spaeth Jr. Contents 1 Taming the Land: A Historical Perspective . . . . . . . . . . . . . . . . . . . . . 1 Taming the Land and Its Consequences . . . . . . . . . . . . . . . . . . . . . . . . . 6 The Advent of Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Land Statistics: Area and Ownership in the United States and Erosion Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 What Is Soil Health: Is It a New Idea? . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Objectives of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 The Ecological Connection in Farming, Ranching, and Gardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Classifying Terrestrial Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Examining the Landscape: Concepts of Land Classification . . . . . . . . . 37 Examples of Two Hierarchical Classifications of Terrestrial Plant Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Hierarchical Classification: Ecoregion . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Rolling Plains and Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Hierarchical Classification: USDA-NRCS-Land Resource Region: Western Range and Irrigated Region and Major Land Resource Area 73 Rolling Plains and Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Evaluating the Landscape at the Ecological Site Scale . . . . . . . . . . . . 46 Ecological Site State and Transition Model . . . . . . . . . . . . . . . . . . . . 54 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3 Hydrology and Erosion Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Hydrology and Erosion Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Hydrologic Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Raindrop Dynamics and Plant Interception . . . . . . . . . . . . . . . . . . . . 89 vii viii Contents Design Storm Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Infiltration Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Biological Soil Crusts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Infiltration Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Infiltration Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Infiltration Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Infiltrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Hydraulic Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Soil Water Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Plant Available Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Watershed Hydrograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Baseflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Subsurface Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Evaporation, Transpiration, and Evapotranspiration . . . . . . . . . . . . . . . . 113 Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Transpiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Water Erosion Dynamics (Figs. 3.16 and 3.17) . . . . . . . . . . . . . . . . . 118 Hydrology and Erosion Models: The Importance of Plant Litter and Foliar Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Wind-Induced Erosion (Fig. 3.22) . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Vegetative Influences and Manipulation on Soil Physical Properties Related to Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4 Cover Crop Dynamics on Hydrology and Erosion . . . . . . . . . . . . . . . 137 History and Agronomic Impacts of Cover Crops . . . . . . . . . . . . . . . . . . 137 Advantages and Disadvantages of Cover Crops . . . . . . . . . . . . . . . . . . . 138 Cover Crop Benefits to Hydrology and Erosion . . . . . . . . . . . . . . . . . . . 143 Rooting Dynamics and Cover Crops . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Treatment I: Corn Grain, Fall Plow 3% Slope . . . . . . . . . . . . . . . . . . 154 SCI and STIR Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Treatment II: Corn Grain, Fall Plot 5% Slope . . . . . . . . . . . . . . . . . . 155 SCI and STIR Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Treatment III: Corn Grain, Spring Disk Cultivation After No-Till Rye Cover Crop 3% Slope . . . . . . . . . . . . . . . . . . . . . . 157 SCI and STIR Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Treatment IV: Corn Grain, No-Till Corn with No-Till Rye Cover Crop 3% Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 SCI and STIR Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Contents ix 5 Vegetation Effects on Hydrology and Erosion: Grazinglands . . . . . . 165 Soil Health Concepts on Rangeland . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Fire Dynamics on Hydrology and Erosion . . . . . . . . . . . . . . . . . . . . . . . 195 Grazing Effects on Rangeland Hydrology and Erosion . . . . . . . . . . . . . 198 Influence of Livestock Grazing and Trampling on Hydrology . . . . . . . . 199 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Soil Erosion and Sediment Production on Watersheds . . . . . . . . . . . . . . 212 Hydrologic Effects of Range Improvement Practices . . . . . . . . . . . . . . . 213 Riparian Vegetation and Grazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 6 Organic Matter: The Whole Truth and Nothing but the Truth . . . . . 227 Introducing Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Global Carbon Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Organic Matter Content in Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Carbon Budgets and Balance in Terrestrial Ecosystems . . . . . . . . . . . 236 Biogeochemical Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Conceptual Flow of Soil Organic Matter and Associated Nutrients . . 244 Carbon Sequestration Potentials and Benefits of Conservation Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Soil Loss Effects on Carbon Budget . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Open Burning Effects on Carbon Balance . . . . . . . . . . . . . . . . . . . . . 260 Contribution of Plant Residues to Soil Organic Matter and Fertility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Carbon Balance Examples in Cropland, Rangeland, Forest, and Garden Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Manure Applications and Carbon Balance . . . . . . . . . . . . . . . . . . . . . . . 278 Quick Facts Regarding Manure? (Tables 6.11 and 6.12) . . . . . . . . . . 281 Manure Applications and Nitrogen Dynamics . . . . . . . . . . . . . . . . . . 286 Organic Matter Fact Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Global Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Microbial Roles in SOM Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Manure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 7 Soil-Hydrology-Plant Assessment Technologies for Cropland, Rangeland, Pastureland, and Gardens . . . . . . . . . . . . . . . . . . . . . . . . . 305 Getting to Know Your Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 Soil Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 Web Soil Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Chapter 1 Taming the Land: A Historical Perspective Abstract Soil health and quality are not new ideas but have gained a resurgence among land users. Many popular publications and scientific studies published in peer-reviewed journals address new ideas and research on cover crops, applying manure and other soil amendments, practicing crop rotations, and using minimum tillage or no-till cropping systems. On cropland, soil health dynamics are quite dif- ferent from grazinglands as the soils are cultivated and fertilized with various amendments (synthetic and/or organic). On grazinglands, ranchers manage soil health through grazing practices and managing vegetation. Therein lies the founda- tion of this book: current soil health emphasis is based on conservation, sustaining the soil resource and maintaining production, and restoration, where economically possible and feasible. Questions • Differentiate the concepts of soil quality and soil health. • Throughout history, what have been the key challenges in cropland agriculture? • How has the pristine land use concept affected the use and management of lands in the United States? • Discuss how conservation practices are related to soil health. I have surveyed vast landscapes from precipices, gorges, and mountains and marveled at the respective landscapes across the United States. The beauty and the complexity of geological influences, topography, and vegetation are incomprehen- sible when one considers all the environmental factors and evolutionary events that were responsible for what we observe today. One can only wonder what first impres- sions indigenous peoples had as they explored and settled in unknown lands throughout the world―awe, and amazement perhaps? Our ancient ancestors who lived in greater intimacy with nature realized the importance and state of the resources around them because of their direct contact with their environment for their livelihood. Various estimates of when and where the earliest systems of culti- vation and animal husbandry vary, but 10,000 years ago is a reasonable estimate. Agricultural practitioners, those involved in farming, ranching, or gardening, often ask questions and wonder about what the land was like before human © Springer Nature Switzerland AG 2020 1 K. E. Spaeth Jr., Soil Health on the Farm, Ranch, and in the Garden, https://doi.org/10.1007/978-3-030-40398-0_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.