ebook img

Soft Methods for Integrated Uncertainty Modelling PDF

397 Pages·2006·13.631 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Soft Methods for Integrated Uncertainty Modelling

JonathanLawry,EnriqueMiranda,AlbertoBugarin,ShoumeiLi,MariaAngelesGil, Przemysa(cid:20) wGrzegorzewski,OlgierdHyrniewicz(Eds.) SoftMethodsforIntegratedUncertaintyModelling AdvancesinSoftComputing Editor-in-chief Prof.JanuszKacprzyk SystemsResearchInstitute PolishAcademyofSciences ul.Newelska6 01-447Warsaw Poland E-mail:[email protected] Furthervolumesofthisseries BarbaraDunin-Keplicz,AndrzejJankowski, canbefoundonourhomepage: AndrzejSkowron,MarcinSzczuka Monitoring,Security,andRescue springer.com TechniquesinMultiagentSystems,2005 ISBN3-540-23245-1 TetsuzoTanino,TamakiTanaka,Masahiro BerndReusch(Ed.) Inuiguchi ComputationalIntelligence,Theoryand Multi-ObjectiveProgrammingandGoal Applications:InternationalConference8th Programming,2003 FuzzyDaysinDortmund,Germany, ISBN3-540-00653-2 Sept.29–Oct.01,2004Proceedings,2005 Mieczys(cid:20)awK(cid:20)opotek,S(cid:20)awomirT. ISBN3-540-2280-1 Wierzchon¥,KrzysztofTrojanowski(Eds.) FrankHoffmann,MarioKˆppen,Frank IntelligentInformationProcessingandWeb Klawonn,RajkumarRoy(Eds.) Mining,2003 SoftComputing:Methodologiesand ISBN3-540-00843-8 Applications,2005 AjithAbraham,KatrinFranke,Mario ISBN3-540-25726-8 Kˆppen(Eds.) AjithAbraham,BernarddeBaets,Mario IntelligentSystemsDesignandApplications, Kˆppen,BertramNickolay(Eds.) 2003 AppliedSoftComputingTechnologies:The ISBN3-540-40426-0 ChallengeofComplexity,2006 AhmadLotÝ,JonathanM.Garibaldi(Eds.) ISBN3-540-31649-3 ApplicationsandScienceinSoft-Computing, AshutoshTiwari,JoshuaKnowles,Erel 2004 Avineri,KeshavDahal,RajkumarRoy(Eds.) ISBN3-540-40856-8 ApplicationsofSoftComputing,2006 Mieczys(cid:20)awK(cid:20)opotek,S(cid:20)awomirT. ISBN3-540-29123-7 Wierzchon¥,KrzysztofTrojanowski(Eds.) Mieczys(cid:20)awA.K(cid:20)opotek,S(cid:20)awomirT. IntelligentInformationProcessingandWeb Wierzchon¥,KrzysztofTrojanowski(Eds.) Mining,2004 IntelligentInformationProcessingandWeb ISBN3-540-21331-7 Mining,2006 MiguelLÛpez-DÌaz,MarÌaÁ.Gil, ISBN3-540-33520-X Przemysa(cid:20) wGrzegorzewski,Olgierd JonathanLawry,EnriqueMiranda,Alberto Hryniewicz,JonathanLawry Bugarin,ShoumeiLi,MariaAngelesGil, SoftMethodologyandRandomInformation Przemysa(cid:20) wGrzegorzewski,Olgierd Systems,2004 Hyrniewicz(Eds.) ISBN3-540-22264-2 SoftMethodsforIntegratedUncertainty KwangH.Lee Modelling,2006 FirstCourseonFuzzyTheoryand ISBN3-540-34776-3 Applications,2005 ISBN3-540-22988-4 Jonathan Lawry Enrique Miranda Alberto Bugarin Shoumei Li Maria Angeles Gil Przemys(cid:20)aw Grzegorzewski Olgierd Hyrniewicz (Eds.) Soft Methods for Integrated Uncertainty Modelling ABC JonathanLawry ShoumeiLi AIGroup DepartmentofAppliedMathematics DepartmentofEngineering BeijingUniversityofTechnology Mathematics Beijing100022,P.R.China UniversityofBristol Bristol,BS81TR,UK EnriqueMiranda MariaAngelesGil ReyJuanCarlosUniversity UniversiaddeOviedo StatisticsandOperationsResearch Fac.Ciencias C-Tulip·ns/n Dpto.EstadisticaeI.OyD.M. MÛstoles28933,Spain CalleCalvoSotelos/n 33071Oviedo,Spain AlbertoBugarin Przemysa(cid:20) wGrzegorzewski OlgierdHyrniewicz IntelligentSystemsGroup DepartmentofElectronics SystemsResearchInstitute &ComputerScience PolishAcademyofSciences UniversityofSantiagodeCompostela Newelska6 SantiagodeCompostela,Spain 01-447Warsaw,Poland LibraryofCongressControlNumber:2006928309 ISSNprintedition:1615-3871 ISSNelectronicedition:1860-0794 ISBN-10 3-540-34776-3SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-34776-7SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,speciÝcallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicroÝlmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 PrintedinTheNetherlands Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspeciÝcstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorandtechbooksusingaSpringerLATEXmacropackage Coverdesign: ErichKirchner,Heidelberg Printedonacid-freepaper SPIN:11757825 89/techbooks 543210 Preface Theideaofsoftcomputingemergedintheearly1990sfromthefuzzysystemscom- munity, and refers to an understanding that the uncertainty, imprecision and igno- rance present in a problem should be explicitly represented and possibly even ex- ploitedratherthaneithereliminatedorignoredincomputations.Forinstance,Zadeh defined‘SoftComputing’asfollows: Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. Ineffect,therolemodelforsoftcomputingisthehumanmind. Recently soft computing has, to some extent, become synonymous with a hybrid approach combining AI techniques including fuzzy systems, neural networks, and biologicallyinspiredmethodssuchasgeneticalgorithms.Here,however,weadopt a more straightforward definition consistent with the original concept. Hence, soft methodsareunderstoodasthoseuncertaintyformalismsnotpartofmainstreamsta- tisticsandprobabilitytheorywhichhavetypicallybeendevelopedwithintheAIand decisionanalysiscommunity.Thesearemathematicallysounduncertaintymodelling methodologies which are complementary to conventional statistics and probability theory. Inadditiontoprobabilisticfactorssuchasmeasurementerrorandotherrandom effects,themodellingprocessoftenrequiresustomakequalitativeandsubjectjudge- ments that cannot easily be translated into precise probability values. Such judge- ments give rise to a number of different types of uncertainty including; fuzziness if they are based on linguistic information; epistemic uncertainty when their relia- bility is in question; ignorance when they are insufficient to identify or restrict key modelling parameters; imprecision when parameters and probability distributions canonlybeestimatedwithincertainbounds.Statisticaltheoryhasnottraditionally been concerned with modelling uncertainty arising in this manner but soft meth- ods, a range of powerful techniques developed within AI, attempt to address those problemswheretheencodingofsubjectiveinformationisunavoidable.Therefore,a morerealisticmodellingprocessprovidingdecisionmakerswithanaccuratereflec- tionofthetruecurrentstateofourknowledge(andignorance)requiresanintegrated VI Preface framework incorporating both probability theory, statistics and soft methods. This fusionmotivatesinnovativeresearchattheinterfacebetweencomputerscience(AI), mathematicsandsystemsengineering. This edited volume is the proceedings of the 2006 International Workshop on SoftMethodsinProbabilityandStatistics(SMPS2006)hostedbytheArtificialIn- telligenceGroupattheUniversityofBristol,between5-7September2006.Thisis thethirdofaseriesofbiennialmeetingsorganizedin2002bytheSystemsResearch Institute from the Polish Academy of Sciences in Warsaw, and in 2004 by the De- partmentofStatisticsandOperationalResearchattheUniversityofOviedoinSpain. Theseconferencesprovideaforumfordiscussionandresearchintothefusionofsoft methods with probability and statistics, with the ultimate goal of integrated uncer- taintymodellingincomplexsystemsinvolvinghumanfactors. The papers in the volume are organized into a number of key themes each ad- dressing a different aspect of the integration of soft methods with probability and statistics.Theseareidentifiedbothasbeinglongstandingfoundationalproblems,as wellaspromisingavenuesofresearchwiththepotentialofprovidingsignificantad- vancesinthemodellingandrepresentationofknowledgeanduncertainty.Alsovital tothedevelopmentofanyacademicdisciplineistheidentificationandexplorationof challengingnewapplicationareas.Itisonlythroughtheapplicationofexistingtools andmethodologiestotheanalysisofuncertaintyinlarge-scalecomplexsystemsthat fundamentalresearchissuescanbeidentifiedandnewcapabilitiesdeveloped. Part I presents abstracts of four keynote presentations by Lotfi Zadeh, Gert de Cooman,JimHallandVladikKreinovich.Prof.Zadeh’stalkprovidesdetailsonthe latestdevelopmentsinhistheoryofgeneraliseduncertainty.Prof.deCooman’stalk describesatheoryoflinguisticprobabilitiesbasedonimpreciseprobabilities.Prof. Hall gives an overview of the application of soft methods in Earth Systems Engi- neering. Prof. Kreinovich describes algorithms for statistical data processing under interval uncertainty and investigates their complexity. Part II on Soft Methods in StatisticsandRandomInformationSystemspresentscurrentresearchleadingtothe developmentofnewstatisticaltoolsincorporatingfuzziness.PartIIIonProbability ofImprecisely-ValuedRandomElementsWithApplicationsfocussesonaspectsof probabilitytheoryincorporatingimprecision.PartIVonApplicationsandModelling ofImpreciseOperatorsconsidershowlinguisticquantifierscanbeusedtodescribe uncertainty. Part V on Imprecise Probability theory concerns the uncertainty mea- surescorrespondingtoupperandlowerprobabilitiesandprevisions.PartVIonPos- sibility,EvidenceandIntervalMethodscontainspapersonpossibilityandevidence theoryaswellasintervalmethods.Finally,partVIIpresentsarangeofchallenging applicationsrequiringtheintegrationofuncertainty,fuzzinessandimprecision. Bristol, JonathanLawry May2006 Contents PartI KeynotePapers GeneralizedTheoryofUncertainty(GTU)–PrincipalConcepts andIdeas LotfiA.Zadeh .................................................... 3 ReasoningwithVagueProbabilityAssessments GertdeCooman .................................................. 5 SoftMethodsinEarthSystemsEngineering JimW.Hall ...................................................... 7 StatisticalDataProcessingunderIntervalUncertainty:Algorithmsand ComputationalComplexity VladikKreinovich ................................................. 11 PartII SoftMethodsinStatisticsandRandomInformationSystems OnTestingFuzzyIndependence OlgierdHryniewicz................................................ 29 VarianceDecompositionofFuzzyRandomVariables AndreasWünsche,WolfgangNäther................................... 37 FuzzyHistogramsandDensityEstimation KevinLoquin,OlivierStrauss........................................ 45 GradedStochasticDominanceasaToolforRankingtheElements ofaPoset KarelDeLoof,HansDeMeyer,BernardDeBaets ....................... 53 VIII Contents OnNeyman-PearsonLemmaforCrisp,RandomandFuzzyHypotheses AdelMohammadpour,AliMohammad-Djafari .......................... 61 FuzzyProbabilityDistributionsInducedbyFuzzyRandomVectors WolfgangTrutschnig............................................... 71 OntheIdentifiabilityofTSKAdditiveFuzzyRule-BasedModels JoséLuisAznarteM.,JoséManuelBenítez ............................. 79 AnAsymptoticTestforSymmetryofRandomVariablesBased onFuzzyTools González-Rodríguez.G.,Colubi,A.,D’UrsoP.,Giordani,P. ............... 87 ExploratoryAnalysisofRandomVariablesBasedonFuzzifications Colubi,A.,González-Rodríguez.G.,Lubiano,M.A.,Montenegro,M.......... 95 AMethodtoSimulateFuzzyRandomVariables González-Rodríguez.G.,Colubi,A.,Gil,M.A.,Coppi,R. ..................103 Friedman’sTestforAmbiguousandMissingData EdytaMrówka,PrzemysławGrzegorzewski.............................111 PartIII ProbabilityofImprecisely-ValuedRandomElements withApplications Measure-FreeMartingaleswithApplicationtoClassicalMartingales S.F.Cullender,W.-C.Kuo,C.C.A.LabuschagneandB.A.Watson............121 ANoteonRandomUpperSemicontinuousFunctions HungT.Nguyen,YukioOgura,SantiTasenaandHienTran ................129 OptionalSamplingTheoremandRepresentationofSet-ValuedAmart ShoumeiLi,LiGuan...............................................137 OnaChoquetTheoremforRandomUpperSemicontinuousFunctions YukioOgura .....................................................145 AGeneralLawofLargeNumbers,withApplications PedroTerán,IlyaMolchanov ........................................153 PartIV ApplicationsandModellingofImpreciseOperators FuzzyProductionPlanningModelforAutomobileSeatAssembling J.Mula,R.Poler,J.P.Garcia-Sabater .................................163 Contents IX OptimalSelectionofProportionalBoundingQuantifiersinLinguistic DataSummarization IngoGlöckner ....................................................173 ALinguisticQuantifierBasedAggregation foraHumanConsistent SummarizationofTimeSeries JanuszKacprzyk,AnnaWilbik,SławomirZadroz˙ny.......................183 EfficientEvaluationofSimilarityQuantifiedExpressions intheTemporalDomain F.Díaz-Hermida,P.Cariñena,A.Bugarín .............................191 PartV ImpreciseProbabilityTheory ConditionalLowerPrevisionsforUnboundedRandomQuantities MatthiasC.M.Troffaes ............................................201 ExtremeLowerProbabilities ErikQuaeghebeur,GertdeCooman ..................................211 EquivalenceBetweenBayesianandCredalNetsonanUpdatingProblem AlessandroAntonucci,MarcoZaffalon ................................223 VaryingParameterinClassificationBasedonImpreciseProbabilities JoaquínAbellán,SerafínMoral,ManuelGómezandAndrésMasegosa.......231 ComparingProportionsDatawithFewSuccesses F.P.A.Coolen,P.Coolen-Schrijner....................................241 AUnifiedViewofSomeRepresentationsofImpreciseProbabilities S.Destercke,D.Dubois ............................................249 PartVI Possibility,EvidenceandIntervalMethods EstimatinganUncertainProbabilityDensity YakovBen-Haim ..................................................261 TheoryofEvidencewithImperfectInformation J.Recasens ......................................................267 ConditionalIF-probability KatarínaLendelová ...............................................275 OnTwoWaysfortheProbabilityTheoryonIF-sets BeloslavRiecˇan...................................................285 X Contents AStratificationofPossibilisticPartialExplanations SaraBoutouhami,AichaMokhtari....................................291 FiniteDiscreteTimeMarkovChainswithIntervalProbabilities DamjanŠkulj.....................................................299 EvidenceandCompositionality WagnerBorges,JulioMichaelStern...................................307 HighLevelFuzzyLabelsforVagueConcepts ZengchangQinandJonathanLawry ..................................317 PartVII IntegratedUncertaintyModellinginApplications PossibilisticChannelsforDNAWordDesign LucaBortolussi,AndreaSgarro ......................................327 TransformationofPossibilityFunctionsinaClimateModel ofIntermediateComplexity HermannHeld,ThomasSchneidervonDeimling ........................337 FuzzyLogicforStochasticModeling ÖzerCiftciogluandI.SevilSariyildiz .................................347 ACUSUMControlChartforFuzzyQualityData DabuxilatuWang..................................................357 AFuzzySynset-BasedHiddenMarkovModel forAutomaticTextSegmentation VietHa-Thuc,Quang-AnhNguyen-Van,TruHoangCaoandJonathanLawry..365 ApplyingFuzzyMeasuresforConsideringInteractionEffects inFineRootDispersalModels WolfgangNäther,KonradWälder ....................................373 Scoring Feature Subsets for Separation Power in Supervised Bayes Classification TatjanaPavlenko,HakanFridén .....................................383 IntervalRandomVariablesandTheirApplicationinQueueingSystems withLong–TailedServiceTimes BartłomiejJacekKubica,KrzysztofMalinowski .........................393 OnlineLearningforFuzzyBayesianPrediction N.J.Randon,J.Lawry,I.D.Cluckie ...................................405 Index ............................................................. 413

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.