ebook img

Sodium-Ion Batteries: Advanced Technology and Applications (De Gruyter Stem) PDF

377 Pages·2022·9.093 MB·English
by  XieManWuFengHuangYongxin
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sodium-Ion Batteries: Advanced Technology and Applications (De Gruyter Stem)

ManXie,FengWu,YongxinHuang Sodium-IonBatteries Also of interest Polymer-basedSolidStateBatteries DanielBrandell,JonasMindemark,GuiomarHernández, ISBN----,e-ISBN(PDF)---- AppliedElectrochemistry KrystynaJackowska,PawełKrysiński, ISBN----,e-ISBN(PDF)---- ElectrochemicalEnergyStorage. PhysicsandChemistryofBatteries ReinhartJob, ISBN----,e-ISBN(PDF)---- WearableEnergyStorageDevices AllibaiMohananVinuMohan, ISBN----,e-ISBN(PDF)---- ChemicalEnergyStorage EditedbyRobertSchlögl, ISBN----,e-ISBN(PDF)---- Man Xie, Feng Wu, Yongxin Huang Sodium-Ion Batteries Advanced Technology and Applications Authors Dr.ManXie SchoolofMaterialScienceandEngineering BeijingInstituteofTechnology SouthZhongguancunStreet HaidianDistrict 100081Beijing China [email protected] FengWu SchoolofMaterialScienceandEngineering BeijingInstituteofTechnology SouthZhongguancunStreet HaidianDistrict 100081Beijing China YonxingHuang SchoolofMaterialScienceandEngineering BeijingInstituteofTechnology SouthZhongguancunStreet HaidianDistrict 100081Beijing China TranslatedbyManXie,JiahuiZhou,YingJiang,YixinZhang ISBN978-3-11-074903-8 e-ISBN(PDF)978-3-11-074906-9 e-ISBN(EPUB)978-3-11-074918-2 LibraryofCongressControlNumber:2022937146 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022PublishingHouseofElectronicsIndustryandWalterdeGruyterGmbH,Berlin/Boston Coverimage:GerardoCarnero/iStock/GettyImagesPlus Typesetting:IntegraSoftwareServicesPvt.Ltd. Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Contents Introduction XI Chapter1 Developmenthistoryandpresentsituationofsodium-ionbatteries 1 1.1 Theriseanddevelopmentofnewenergy 1 1.2 Thedevelopmentofsodium-ionbatteries 5 1.3 Basicprinciplesofsodium-ionbatteries 10 1.4 Overviewofkeymaterialsforsodium-ionbatteries 12 1.5 Developmenttrendofsodium-ionbatteries 16 References 16 Chapter2 Testingandresearchmethodsforsodium-ionbatteries 18 2.1 Testanalysisofelectrodematerials 18 2.1.1 Structureandcompositiontestofelectrodematerials 18 2.1.1.1 X-raydiffraction 19 2.1.1.2 X-rayabsorptionfinestructurespectroscopy 20 2.1.1.3 X-rayphotoelectronspectroscopy 22 2.1.1.4 Spectroscopyanalysistechnique 25 2.1.1.5 Scanningelectronmicroscopetechnique 30 2.1.1.6 Transmissionelectronmicroscopytechnique 32 2.1.1.7 Nuclearmagneticresonancetechnique 33 2.1.1.8 Thermogravimetricanalysistechnique 34 2.1.1.9 Specificsurfaceareaandporesizeanalysistechniques 36 2.1.1.10 Neutrondiffractionanalysistechnique 37 2.1.2 Electrochemicalperformancetestingofelectrodematerials 37 2.1.2.1 Galvanostaticcharge/discharge 38 2.1.2.2 Cyclicvoltammetry 39 2.1.2.3 Electrochemicalimpedancespectroscopy 42 2.1.2.4 Galvanostaticintermittenttitrationtechnique 44 2.1.2.5 Potentiostaticintermittenttitrationtechnique 44 2.2 Testanalysisofelectrolytes 45 2.2.1 Liquidelectrolyteanalysisofsodium-ionbatteries 47 2.2.2 Solidelectrolyteanalysisforsodium-ionbatteries 48 2.2.3 Analysisofsodium-ionbatteryinterface 50 2.2.3.1 Atomicforcemicroscopetechniques 51 2.2.3.2 OtherSEItestingtechniques 52 2.3 Insitutechniquesforsodium-ionbatteries 52 2.3.1 Insitustructuralandcomponentevolutionstudies 53 2.3.1.1 InsituXRDtechnique 53 VI Contents 2.3.1.2 InsituNMRtechnique 55 2.3.1.3 Insituspectroscopy 57 2.3.1.4 Insitusynchrotronradiationtechnique 57 2.3.2 Insitumorphologyevolution 60 2.3.2.1 InsituTEMtechnique 60 2.3.2.2 Insituatomicforcemicroscopetechnique 62 2.3.2.3 Insituneutrondiffractiontechnique 62 References 64 Chapter3 Cathodematerialsforsodium-ionbatteries 67 3.1 Transitionmetaloxides 68 3.1.1 O3-typetransitionmetaloxides 71 3.1.2 P2-typetransitionmetaloxides 82 3.1.3 Tunnelstructuretransitionmetaloxides 89 3.2 Polyanioniccathode 96 3.2.1 Phosphate-typepolyanioniccompounds 97 3.2.2 Pyrophosphate-typepolyanioniccompound 101 3.2.3 Sulfate-typepolyanioniccompounds 102 3.2.4 Dopedphosphate-typepolyanioniccompounds 103 3.3 PrussianblueandPrussianblueanalogues 108 3.3.1 Prussianblueanaloguesbasedonsingle-pointreaction 112 3.3.2 Prussianbluebasedondouble-pointsreaction 115 3.3.3 PrussianBlueanaloguesbasedondouble-pointreaction 118 3.3.4 PrussianBlueanaloguescompoundwithoptimizedstructure 127 3.4 Othercathodematerialsforsodium-ionbatteries 134 3.4.1 Transitionmetalfluorides 134 3.4.2 Sodium-containingorganiccompoundcathodematerials 135 References 139 Chapter4 Anodematerialforsodium-ionbattery 148 4.1 Carbon-basedanodematerials 150 4.1.1 Graphite 151 4.1.2 Graphene 153 4.1.3 Softcarbon 155 4.1.4 Hardcarbon 157 4.1.5 Othercarbonmaterials 160 4.2 Titanium-basednegativeelectrodematerials 162 4.2.1 TiO electrodematerial 163 2 4.2.2 LiTiO -typenegativeelectrodematerials 166 x y 4.2.3 Na TiO -typenegativeelectrodematerials 169 x y Contents VII 4.2.4 NaTi (PO ) -typenegativeelectrodematerials 172 2 43 4.3 Transformation-responsiveanodematerials 175 4.3.1 Metaloxidecathodematerials 175 4.3.2 Metalsulfideanodematerials 180 4.3.3 Metalselenideanodematerials 185 4.3.4 Metalphosphideanodematerials 189 4.3.5 Metalfluorideanodematerials 192 4.4 Intermetalliccompoundanodematerials 193 4.4.1 Metalanodematerials(Sn,Pb,Bi) 194 4.4.2 Metal-likeanodematerials(Si,Ge,As,Sb) 197 4.4.3 Non-metallic(P) 199 4.5 Otheranodematerials 201 4.5.1 MXene 201 4.5.2 Organiccompoundanodematerials 202 4.5.3 Sodiummetalanodematerials 204 References 207 Chapter5 Sodium-ionbatteryelectrolyte 218 5.1 Overviewofelectrolytesandtheircharacteristics 218 5.1.1 Chemical–electrochemicalstability 219 5.1.2 Thermalstability 222 5.1.3 Iontransportperformance 223 5.1.4 Otherperformance 227 5.2 Sodiumsalt 227 5.3 Organicliquidelectrolytes 231 5.3.1 Carbonate-basedelectrolytes 231 5.3.1.1 Carbonatesolvent 233 5.3.1.2 Sodiumsaltinester-basedelectrolyte 235 5.3.1.3 Additivesinester-basedelectrolytes 236 5.3.2 Ether-basedelectrolyte 238 5.4 Ionicliquidelectrolyte 245 5.4.1 Iontypesofelectrolytes 246 5.4.2 Thermalstability 247 5.4.3 Physicalandchemicalproperties 248 5.4.4 Electrochemicalproperties 251 5.5 Solidelectrolyte 253 5.5.1 Polymerelectrolyte 253 5.5.2 Inorganicsolidelectrolyte 255 5.5.2.1 SolidelectrolyteofAl O anditsanalogues 255 2 3 5.5.2.2 SolidelectrolytewithNASICONframestructure 255 5.5.2.3 Sulfidesolidelectrolyte 258 VIII Contents 5.5.2.4 Compositehydridesolidelectrolyte 263 5.5.3 Mixedelectrolyte 265 5.6 Aqueouselectrolyte 270 5.7 Electrode–electrolyteinterface 275 5.7.1 Basiccharacteristicsofelectrode–electrolyteinterface 275 5.7.2 Electrode–electrolyteinterfacemodel 278 5.7.2.1 SEIinhardcarbon 278 5.7.2.2 SEIinothercarbonmaterials 281 5.7.2.3 SEIonTi-basedanodes 281 5.7.2.4 SEIinorganicelectrodes 284 5.7.2.5 SEIinalloyanodes 284 5.7.2.6 SEIincathodes 287 5.7.3 Studyonthemodificationofelectrode–electrolyte 287 References 291 Chapter6 Thecommercializationofsodium-ionbatteries 306 6.1 SWOTanalysisofsodium-ionbatteries 307 6.1.1 Advantage 308 6.1.1.1 Resourcesandcosts 308 6.1.1.2 Powercharacteristics 310 6.1.1.3 Recyclability 312 6.1.1.4 Climaticcharacteristics 313 6.1.1.5 Security 316 6.1.2 Disadvantage 317 6.1.2.1 Energydensity 317 6.1.2.2 Electrodematerials 318 6.1.2.3 Electrolyte 318 6.1.3 Opportunity 319 6.1.3.1 Governmentpolicies 319 6.1.3.2 Marketdemandstatusquo 321 6.1.3.3 Socialandtechnicalenvironment 324 6.1.4 Threat 324 6.1.4.1 Marketcompetition 324 6.1.4.2 Businessmodel 326 6.2 Researchprogressofsodium-ionfullbattery 327 6.2.1 Organicsodium-ionfullbattery 328 6.2.1.1 Symmetricsodium-ionfullcell 330 6.2.1.2 Asymmetricsodium-ionfullcell 330 6.2.2 Aqueoussodium-ionfullcell 334 6.2.2.1 Embeddednegative/embeddedpositive-type 337 6.2.2.2 Capacitornegative/embeddedpositive-typebatterysystem 339 Contents IX 6.2.2.3 Newsystems 341 6.2.3 All-solid-statesodiumbatteries 343 6.2.3.1 Embeddednegative-type 345 6.2.3.2 Metalnegativetype 345 6.3 Structuraldesignofsodium-ionbatteries 348 6.3.1 Softpackbatteries 349 6.3.2 Cylindrical/squarecells 350 6.3.3 Flexible/stretchablecells 352 6.3.3.1 Developporousstructuredeformablebatterycomponents,such asporouscollectors,porouselectrodes,flexiblesolid electrolytes,etc 353 6.3.3.2 Ultrathincelldesigns,suchassinglepair(ordoublepair) positive/diaphragm/negativestructures 354 6.3.3.3 Celldesignwithgeometrictopology,suchaslinearstructure, Origami,Kirigamistructure,etc 354 6.3.3.4 Decouplingtheflexibleandenergystoragepartsofbatteries, suchasridgedbatteries,zigzagbatteries,etc 356 References 357 Index 363

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.