ebook img

Social Networks; Modelling and Analysis PDF

254 Pages·2022·15.36 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Social Networks; Modelling and Analysis

Social Networks Social Networks Modelling and Analysis Niyati Aggrawal and Adarsh Anand First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here- after invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978- 750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Aggrawal, Niyati, author. | Anand, Adarsh, author. Title: Social networks : modelling and analysis / Niyati Aggrawal and Adarsh Anand. Description: First edition. | Boca Raton : CRC Press, 2022. | Includes bibliographical references and index. Identifiers: LCCN 2021042172 | ISBN 9780367541392 (hardback) | ISBN 9780367541736 (paperback) | ISBN 9781003088066 (ebook) Subjects: LCSH: Social media. | Social sciences--Network analysis. | Social media. Classification: LCC HM742 .A4224 2022 | DDC 302.23/1--dc23/eng/20211021 LC record available at https://lccn.loc.gov/2021042172 ISBN: 9780367541392 (hbk) ISBN: 9780367541736 (pbk) ISBN: 9781003088066 (ebk) DOI: 10.1201/9781003088066 Typeset in Times by KnowledgeWorks Global Ltd. Dedication Dr. Niyati Aggrawal would like to dedicate this book to her father Late Sh. Girish Kumar Aggrawal, her mother Smt. Meenakshi Aggrawal, her husband Sachin and her kids Aarohi and Avik. Dr. Adarsh Anand would like to dedicate this book to his family and his daughters Ahana and Aavya Contents Preface....................................................................................................................xiii Acknowledgements ..................................................................................................xv Authors ...................................................................................................................xvii Chapter 1 Introduction to Social Networks ..........................................................1 1.1 Concept of Complex Networks ..................................................1 1.2 Overview of Social Network Analysis ......................................1 1.2.1 Social Networks and Social Networking .....................1 1.2.2 Social Network Visualization and Statistical Analysis ........................................................................3 1.2.3 Social Network Modelling ...........................................5 1.2.4 Link Prediction .............................................................5 1.2.5 Community Detection ..................................................5 1.2.6 Ego Network .................................................................5 1.2.7 Network Motifs ............................................................6 1.2.8 Security and Privacy Issues ..........................................6 1.3 Social Media Content ................................................................6 1.3.1 Content Characteristics ................................................6 1.3.2 Content Dynamics ........................................................6 1.3.3 User Characteristics .....................................................7 1.4 Levels of Network Analysis.......................................................7 1.4.1 Micro-Level ..................................................................7 1.4.2 Meso-Level ...................................................................8 1.4.3 Macro-Level .................................................................9 1.5 Complex Networks ....................................................................9 1.6 Problems for Self-Assessment .................................................11 References ..........................................................................................11 Chapter 2 Network Statistics and Related Concepts ...........................................13 2.1 Networks and Graphs ..............................................................13 2.2 Different Types of Networks ...................................................15 2.2.1 Undirected Networks..................................................15 2.2.2 Directed Networks .....................................................16 2.2.3 Self-Loops ..................................................................20 2.2.4 Multigraph/Simple Graphs .........................................20 2.2.5 Weighted Network ......................................................20 2.2.6 Complete Graph (Clique) ...........................................20 2.2.7 Bipartite Graph ...........................................................21 2.3 Representation of the Networks ..............................................22 2.3.1 Adjacency Matrix .......................................................22 vii viii Contents 2.3.2 Real Networks are Sparse ..........................................26 2.3.3 Complete Graph .........................................................26 2.4 Network Properties ..................................................................28 2.4.1 Node Degree ...............................................................28 2.4.2 Average Degree ..........................................................28 2.4.3 Degree Distribution ....................................................29 2.4.4 Paths and Distance in Graph ......................................30 2.4.5 Shortest Path ...............................................................32 2.4.6 Network Diameter ......................................................32 2.4.7 Average Path Length ..................................................32 2.4.8 Clustering Coefficient.................................................33 2.5 Problems for Self-Assessment .................................................35 References ..........................................................................................36 Chapter 3 Network Models .................................................................................37 3.1 Basic Features of Networks .....................................................37 3.1.1 Continuous Distribution .............................................37 3.1.2 Discrete Distribution ..................................................37 3.2 Generative Models ...................................................................39 3.2.1 Random Graph Models ..............................................39 3.2.2 Preferential Attachment Model ..................................45 3.2.3 Small-World Model ....................................................48 3.3 Six Degrees of Separation .......................................................50 3.4 Problems for Self-Assessment .................................................51 References ..........................................................................................52 Chapter 4 Network Centrality .............................................................................53 4.1 Centrality Measures Overview ................................................53 4.2 Degree Centrality ....................................................................54 4.3 Eigenvector Centrality .............................................................57 4.4 Katz Centrality ........................................................................59 4.5 Betweenness Centrality ...........................................................60 4.6 Closeness Centrality ................................................................62 4.7 Problems for Self-Assessment .................................................64 References ..........................................................................................65 Chapter 5 Link Analysis .....................................................................................67 5.1 Link Analysis in Web Mining .................................................67 5.2 Ranking Algorithms ................................................................68 5.3 Hyperlink-Induced Topic Search (HITS) ................................69 5.4 Pagerank Algorithm ................................................................76 5.5 Problems for Self-Assessment .................................................80 References ..........................................................................................81 Contents ix Chapter 6 Link Prediction ...................................................................................83 6.1 Overview of Link Prediction ...................................................83 6.2 Link Prediction Methods .........................................................83 6.2.1 Graph Distance ...........................................................83 6.2.2 Common Neighbours .................................................84 6.2.3 Jaccard’s Coefficient ...................................................85 6.2.4 Adamic/Adar (Frequency-Weighted Common Neighbours) ................................................................86 6.2.5 Preferential Attachment .............................................87 6.2.6 Katz (Exponentially Damped Path Counts) ...............87 6.2.7 Hitting Time ...............................................................89 6.2.8 Rooted (Personalized) PageRank ...............................89 6.3 Other Metrics ...........................................................................90 6.3.1 Friends Measure .........................................................90 6.3.2 Cosine Similarity .......................................................90 6.3.3 Sørensen Index ...........................................................91 6.3.4 Hub Promoted Index ..................................................92 6.3.5 Hub Depressed Index .................................................93 6.3.6 Leicht–Holme–Newman Index ..................................93 6.4 Prediction Performance Metrics ..............................................94 6.5 Problems for Self-Assessment .................................................95 References ..........................................................................................95 Chapter 7 Community Detection ........................................................................97 7.1 Overview of Community .........................................................97 7.2 Taxonomy of Community Criteria ..........................................98 7.2.1 Node-Centric Community Detection .........................99 7.2.2 Group-Centric Community Detection .....................105 7.2.3 Network-Centric Community Detection ..................106 7.2.4 Hierarchy-Centric Community Detection ................117 7.3 Community Evaluation ..........................................................136 7.4 Problems for Self-Assessment ...............................................139 References ........................................................................................141 Chapter 8 Ego Networks ...................................................................................143 8.1 Overview of Ego Networks ...................................................143 8.2 Characteristics of Ego Networks ...........................................144 8.3 Ego Network Measures..........................................................145 8.3.1 Ego Network Density ...............................................145 8.3.2 Structural Holes ........................................................145 8.3.3 Brokerage .................................................................151 8.4 Problems for Self-Assessment ...............................................153 References ........................................................................................153

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.