ebook img

Smart Sensors for Environmental and Medical Applications (IEEE Press Series on Sensors) PDF

231 Pages·2020·5.647 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Smart Sensors for Environmental and Medical Applications (IEEE Press Series on Sensors)

Smart Sensors for Environmental and Medical Applications IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board Ekram Hossain, Editor in Chief Jón Atli Benediktsson Bimal Bose David Alan Grier Elya B. Joffe Xiaoou Li Peter Lian Andreas Molisch Saeid Nahavandi Jeffrey Reed Diomidis Spinellis Sarah Spurgeon Ahmet Murat Tekalp Smart Sensors for Environmental and Medical Applications Edited by Hamida Hallil and Hadi Heidari IEEE Press Series on Sensors Vladimir Lumelsky, Series Editor © 2020 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per‐copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, or on the web at www.copyright. com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762‐2974, outside the United States at (317) 572‐3993 or fax (317) 572‐4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging‐in‐Publication Data Names: Hallil, Hamida, 1981– editor. | Heidari, Hadi, editor. Title: Smart sensors for environmental and medical applications / Hamida Hallil, Hadi Heidari. Description: Hoboken, New Jersey : Wiley-IEEE Press, 2020. | Series: IEEE press series on sensors | Includes bibliographical references and index. Identifiers: LCCN 2020011698 (print) | LCCN 2020011699 (ebook) | ISBN 9781119587347 (hardback) | ISBN 9781119587354 (adobe pdf) | ISBN 9781119587378 (epub) Subjects: LCSH: Biosensors. | Medical instruments and apparatus. Classification: LCC R857.B54 S64 2020 (print) | LCC R857.B54 (ebook) | DDC 610.28/4–dc23 LC record available at https://lccn.loc.gov/2020011698 LC ebook record available at https://lccn.loc.gov/2020011699 Cover Design: Wiley Cover Image: © toodtuphoto/Shutterstock Set in 9.5/12.5pt STIXTwoText by SPi Global, Pondicherry, India Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 v Contents List of Contributors xi Preface xiii About the Editors xvii 1 Introduction 1 Hamida Hallil and Hadi Heidari 1.1 Overview 1 1.2 Sensors: History and Terminology 2 1.2.1 Definitions and General Characteristics 3 1.2.2 Influence Quantities 5 1.3 Smart Sensors for Environmental and Medical Applications 6 1.4 Outline 8 Reference 9 2 Field Effect Transistor Technologies for Biological and Chemical Sensors 11 Anne-Claire Salaün, France Le Bihan, and Laurent Pichon 2.1 Introduction 11 2.2 FET Gas Sensors 12 2.2.1 Materials 12 2.2.1.1 Inorganic Semiconductors 12 2.2.1.2 Semiconductor Polymers 12 2.2.1.3 Nanostructured Materials 13 2.2.2 FET as Gas Sensors 13 2.2.2.1 Pioneering FET Gas Sensors 13 2.2.2.2 OFET Gas Sensors 13 2.2.2.3 Nanowires-Based FET Gas Sensors 14 2.3 Ion-Sensitive Field Effect Transistors Based Devices 18 2.3.1 Classical ISFET 18 2.3.2 Other Technologies 19 2.3.2.1 EGFET: Extended Gate FET 20 vi Contents 2.3.2.2 SGFET: Suspended Gate FFETs 20 2.3.2.3 DGFET: Dual-Gate FETs 20 2.3.2.4 Water Gating FET or Electrolyte Gated FET 21 2.3.2.5 Other FETs 23 2.3.3 BioFETs 23 2.3.3.1 General Considerations 23 2.3.3.2 DNA BioFET 23 2.3.3.3 Protein BioFET 25 2.3.3.4 Cells 25 2.4 Nano-Field Effect Transistors 25 2.4.1 Fabrication of Nano-Devices 25 2.4.1.1 Silicon Nano-Devices 25 2.4.1.2 Carbon Nanotubes Nano-Devices 28 2.4.2 Detection of Biochemical Particles by Nanostructures-Based FET 28 2.4.2.1 SiNW pH Sensor 29 2.4.2.2 DNA Detection Using SiNW-Based Sensor 30 2.4.2.3 Protein Detection 32 2.4.2.4 Detection of Bacteria and Viruses 33 References 34 3 Mammalian Cell-Based Electrochemical Sensor for Label-Free Monitoring of Analytes 43 Md. Abdul Kafi, Mst. Khudishta Aktar, and Hadi Heidari 3.1 Introduction 43 3.2 State-of-the-Art Cell Chip Design and Fabrication 45 3.3 Substrate Functionalization Strategies at the Cell–Electrode Interface 48 3.4 Electrochemical Characterization of Cellular Redox 49 3.5 Application of Cell-Based Sensor 51 3.6 Prospects and Challenges of Cell-Based Sensor 54 3.7 Conclusion 56 References 56 4 Electronic Tongues 61 Flavio M. Shimizu, Maria Luisa Braunger, Antonio Riul, Jr., and Osvaldo N. Oliveira, Jr. 4.1 Introduction 61 4.2 General Applications of E-tongues 63 4.3 Bioelectronic Tongues (bETs) 65 4.4 New Design of Electrodes or Measurement Systems 66 4.5 Challenges and Outlook 73 Acknowledgments 73 References 74 Contents vii 5 Monitoring of Food Spoilage Using Polydiacetylene‐ and Liposome‐Based Sensors 81 Max Weston, Federico Mazur, and Rona Chandrawati 5.1 Introduction 81 5.2 Polydiacetylene for Visual Detection of Food Spoilage 82 5.2.1 Contaminant Detection 83 5.2.2 Freshness Indicators 85 5.2.3 Challenges, Trends, and Industrial Applicability in the Food Industry 87 5.3 Liposomes 88 5.3.1 Pathogen Detection 88 5.3.1.1 Escherichia coli  88 5.3.1.2 Salmonella spp. 90 5.3.1.3 Other Bacterium 90 5.3.1.4 Viruses, Pesticides, and Toxins 91 5.3.2 Stability of Liposome‐Based Sensors 93 5.3.3 Industrial Applicability of Liposomes 93 5.4 Conclusions 94 References 94 6 Chemical Sensors Based on Metal Oxides 103 K. S. Shalini Devi, Aadhav Anantharamakrishnan, Uma Maheswari Krishnan, and Jatinder Yakhmi 6.1 Introduction 103 6.2 Classes of MOx-Based Chemical Sensors 104 6.3 Synthesis of MOx Structures 104 6.4 Mechanism of Sensing by MOx 105 6.5 Factors Influencing Sensing Performance 106 6.6 Applications of MOx-Based Chemical Sensors 109 6.6.1 MOx Sensors for Environmental Monitoring 109 6.6.2 MOx Sensors in Clinical Diagnosis 112 6.6.3 MOx Sensors in Pharmaceutical Analysis 113 6.6.4 MOx-Based Sensors in Food Analysis 116 6.6.5 MOx Sensors in Agriculture 117 6.6.6 MOx Sensors for Hazard Analysis 117 6.6.7 Flexible Sensors Based on MOx 118 6.6.8 MOx-Based Lab-on-a-Chip Sensors 118 6.7 Concluding Remarks 119 Acknowledgment 119 References 120 viii Contents 7 Metal Oxide Gas Sensor Electronic Interfaces 129 Zeinab Hijazi, Daniele D. Caviglia, and Maurizio Valle 7.1 General Introduction 129 7.1.1 Gas Sensing System 129 7.1.2 Gas Sensing Technologies 130 7.2 MOX Gas Sensors 131 7.2.1 Principle of Operation 131 7.2.2 Assessment of Available MOX-Based Gas Sensors 132 7.3 System Requirements and Literature Review 134 7.3.1 System Requirements 134 7.3.2 Wide Range Resistance Interface Review 136 7.4 Resistance to Time/Frequency Conversion Architecture 137 7.4.1 Electronic Circuit Description 137 7.4.2 Specifications for Each Building Block to Preserve High Linearity 138 7.4.2.1 Resistance to Current Conversion (R-to-I) 138 7.4.2.2 Switches 141 7.4.2.3 Current to Voltage Conversion (I-to-V) 141 7.4.2.4 Voltage to Time/Period (V-to-T) Conversion 141 7.5 Power Consumption 141 7.5.1 Power Consumption of MOX Gas Sensor 141 7.5.2 Low Power Operating Mode 142 7.5.3 Power Consumption at Circuit Level 142 7.6 Conclusion 143 References 143 8 Smart and Intelligent E-nose for Sensitive and  Selective Chemical Sensing Applications 149 Saakshi Dhanekar 8.1 Introduction 149 8.1.1 The Human Olfactory System 150 8.1.2 The Artificial Olfactory System 150 8.1.2.1 Sensor Array 151 8.1.2.2 Multivariate Data Analysis 152 8.1.2.3 Pattern Recognition Methods 153 8.2 What Is an Electronic Nose? 154 8.3 Applications of E-nose 155 8.3.1 Key Applications of E-nose 155 8.3.2 E-nose for Chemical Sensing 155 8.4 Types of E-nose 157 8.5 Examples of E-nose 158 8.6 Improvements and Challenges 165 Contents ix 8.7 Conclusion 165 References 166 9 Odor Sensing System 173 Takamichi Nakamoto and Muis Muthadi 9.1 Introduction 173 9.2 Odor Biosensor 174 9.3 Prediction of Odor Impression Using Deep Learning 176 9.4 Establishment of Odor‐Source Localization Strategy Using Computational Fluid Dynamics 181 9.4.1 Background of Odor‐Source Localization 181 9.4.2 Sensor Model with Response Delay 182 9.4.3 Simulation of Testing Environment Using CFD 183 9.4.4 Simulation of Biologically Inspired Odor‐Source Localization 185 9.4.4.1 Odor Plume Tracking Strategy 185 9.4.4.2 Result 186 9.4.5 Summary of Odor Source Localization Strategy 187 9.5 Conclusion 188 Acknowledgments 189 References 189 10 Microwave Chemical Sensors 193 Hamida Hallil and Corinne Dejous 10.1 Interests of Electromagnetic Transducer Gas Sensors at Microwave Frequencies 193 10.2 Operating Principle 193 10.2.1 Electromagnetic Transducers 193 10.2.2 The Case of Microwave Transducers 195 10.3 Theory of Microwave Transducers: Design, Methodology, and Approach 196 10.4 Microwave Structure‐Based Chemical Sensor 200 10.4.1 Manufacturing Techniques 200 10.4.2 Chemical Microwave Sensors 200 10.4.3 Wireless Interrogation Schemes 204 10.5 Multivariate Data Analysis and Machine Learning for Targeted Species Identification 207 10.6 Conclusion and Prospects 209 Acknowledgments 210 References 210 Index 217

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.