ebook img

Smart Rubbers: Synthesis and Applications, 2nd Edition PDF

112 Pages·2019·0.919 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Smart Rubbers: Synthesis and Applications, 2nd Edition

LorenzoMassimoPolgar,MachielvanEssen,AndreaPucci,FrancescoPicchioni SmartRubbers Also of interest Magneto-ActivePolymers Fabrication,characterisation,modellingandsimulation atthemicro-andmacro-scale Pelteret,Steinmann, ISBN----,e-ISBN---- TwinPolymerization NewStrategyforHybridMaterialsSynthesis Spange,Mehring, ISBN----,e-ISBN---- ShapeMemoryPolymers Kalita, ISBN----,e-ISBN---- PolymerEngineering Tylkowski,Wieszczycka,Jastrzab(Eds.), ISBN----,e-ISBN---- e-Polymers. Editor-in-Chief:SeemaAgarwal ISSN- e-ISSN- Lorenzo Massimo Polgar, Machiel van Essen, Andrea Pucci, Francesco Picchioni Smart Rubbers Synthesis and Applications 2nd Edition Author Dr.LorenzoMassimoPolgar Prof.AndreaPucci NXPSemiconductorsNetherlandsB.V. UniversitàdiPisa HighTechCampus60 DipartimentodiChimicaeChimicaIndustriale 5656AGEindhoven ViaGiuseppeMoruzzi13 Netherlands 56124Pisa Italy MachielvanEssen TechnicalUniversityofEindhoven Prof.Dr.FrancescoPicchioni Dept.ofChemicalEngineering&Chemistry UniversityofGroningen POBox513 FacultyofScienceandEngineering 5600MBEindhoven ProductTechnology Netherlands Nijenborgh4 9747AGGroningen Netherlands ISBN978-3-11-063892-9 e-ISBN(E-BOOK)978-3-11-063901-8 e-ISBN(EPUB)978-3-11-063931-5 LibraryofCongressControlNumber:2018966601 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Typesetting:IntegraSoftwareServicesPvt.Ltd. Printingandbinding:CPIbooksGmbH,Leck Coverimage:Photoephemera/Moment/GettyImages www.degruyter.com Preface ‘Smartrubbers’aredefinedaselastomericmaterialsthatrespondtoexternalstimuli through a macroscopic output in which the energy of the stimulus is transduced appropriatelyasafunctionofexternalinterference. The bulk of these materials generally consist of elastomers or materials with rubberybehaviourandproperties,butdisplayasmartresponse.A‘rubber’istypi- cally a polymer that completely recovers its original shape upon deformation as a result of physical or chemical crosslinking of the macromolecular network. The term ‘smart’ implies that the material displays a response to an external stimulus andthatthisoccursinacontrolledmanner. Researchintosmartrubbershasincreaseddrasticallyoverthelastfewdecades, predominantlyduetothegrowingdemandof,andtheneedfor,improvedmaterials fornewapplications.Incentivesforthesedemandsaregenerallybasedonsocietal aspectssuchaseconomics(i.e.,costreduction)andsustainability.Thus,smartrub- bers are not limited only to scientific aspects but also intersect with societal rele- vance. An overview of how the research field of smart rubbers is divided and connectedintoseveralcomponentsisshowninFigureP1.1. Polymer class X Stimulus Response class Applications Social relevance Additives class Y FigureP1.1:Schematicoverviewoftherelationshipbetweenthevariouskeyvariablesthatshould beconsideredinthedesignofsmartrubbers. The research field of smart rubbers covers multiple components. Providing an updateofsmartrubbersforeachcomponentinonebookisnotpossible.Hence,the authorshavetaken‘snapshots’ofseveralcontributionsconsideredsuitabletopro- videparadigmaticinformationaboutthemaintopic. First, an update is provided on the sustainable design of smart rubbers (Chap- ter1),whichisahottopicthathasanevidenthighsocietalrelevance.Subsequently, sensingrubbers(Chapter2)representatypicalapplicationofsmartrubbers,andare discussed in the context of academic and industrial developments. Optically active https://doi.org/10.1515/9783110639018-201 VI Preface elastomers(Chapter3)areaddressedasanotherillustrativeexampleofadifferentre- sponse category. Lastly, the combination of components required to formulate a smart rubber in a specific response class of actuating elastomers are discussed in moredetail.Thisdiscussionissubdividedintoshapememory(Chapter4),magneto- rheological elastomers (Chapter 5), and dielectric elastomers (Chapter 6). Different stimuliandapplicationsareentwinedthroughoutallchapters. In this way, the authors provide an update of smart rubbers that is relevant, interestingandunderstandableforindustry,scientists,experts,andstudents. Contents Preface V 1 Sustainabilityinthedesignofrubbermaterials 1 1.1 Bio-Basedrubbers 4 1.2 Recyclableandself-healingrubbers 6 1.2.1 Recyclingrubber 6 1.2.2 Reversiblecrosslinking 6 1.2.3 Self-healingelastomers 8 1.2.4 Autonomousself-healingbydamage-triggeredsmart containers 10 1.2.5 Intrinsicself-healingviareversiblecrosslinking 11 1.2.5.1 Self-healingthroughnon-covalentinteractions 12 1.2.5.2 Thermo-reversiblechemicalinteractions 15 1.3 Concludingremarks 16 References 16 2 Environment-sensingrubbers 23 2.1 Introduction 23 2.2 Mechanicalsensors 24 2.3 Temperaturesensors 28 2.4 Chemicalsensors 31 2.5 Conclusions 33 References 33 3 Opticallyactiveelastomers 37 3.1 Introductionandbasicprinciples 37 3.2 Chromogenicelastomers 38 3.3 Tropogenicelastomers 46 3.4 Elastomericlenses 48 References 50 4 Shape-memoryelastomers 51 4.1 Introduction 51 4.2 Heat-inducedshapememoryinshape-memoryelastomers 52 4.3 Otherexternalstimuli 59 References 64 5 Magnetorheologicalelastomers 67 5.1 Backgroundandbasicprinciples 67 5.2 Mechanicalproperties 68 VIII Contents 5.3 Behaviourinamagneticfield 71 5.4 Electricalpropertiesinmagneticfields 75 5.5 Applications 77 References 79 6 Dielectricelastomers 81 6.1 Introductionandbasicprinciples 81 6.2 Tailoredelastomers 83 6.3 Additivesindielectricelastomers 86 References 88 7 Futureoutlook 89 Abbreviations 91 Index 93 1 Sustainability in the design of rubber materials Sustainabilitybecomesanevermoreimportantandunavoidabletopicwhendesigning materialsorchemicalproducts.Thisisalsothereasonforthevastincreaseinresearch output on this topic and the number of scientific articles having ‘sustainability’ as a majorkeyword(Figure1.1).Sustainablematerialscanbedefinedbroadlyasmaterials thatcanbeproducedandreusedindefinitelywithoutaffectingthehuman–ecosystem equilibrium. Three major issues should be taken into consideration for the develop- mentofasustainablematerial:theproductionprocess,carbonfootprintandpurpose ofthematerialattheendofitsproductlife. First, the process to develop and produce the material should be sustainable. Hence, an energy-neutral process is required and all solvents and utility streams mustultimatelyberecycledwithouttheproductionofanywaste.Agoodexampleis therecentlydevelopedprocesstoextruderubbersusingsupercriticalcarbondioxide (scCO)[1].Besidesbeingagoodandgreensolvent,scCO improvesthedispersionof 2 2 materials such as fillers or other polymers in the rubber matrix [1, 2]. After the pro- cess, the harmless solvent is easily fed back into the environment by releasing the pressure. The focus of this book is materials (smart rubbers) so, rather than smart processing, the carbon footprint of a material and its recyclability will be discussed in more detail because they are more related to the material itself. As both compo- nentsareimportant,theycannotalwaysbedistinguished(Figure1.2). Currently, most rubber products consist of elastomers that originate from the lower-leftquadrant.Theseelastomersareusuallyoil-basedandnon-recyclabledue to the presence of irreversible crosslinks. A significant amount of the rubber prod- uctsthatweuse(≈40%ofallrubberused[3,4])stillcontainalotofnaturalrubber (NR),whichisanaturalpolymericcompoundproducedfromthelatexofHeveabra- siliensis (which mainly contains cis-polyisoprene). This amount is ever decreasing asNRisbeingreplacedbysyntheticrubbersthathavebeendevelopedtomeetthe highlydemandingrequirementsforspecificapplications.Agoodexampleofsucha specific application that requires very specific material is sealants. The neoprene groupofsyntheticrubbersthatisgenerallyusedforsuchapplicationsisverystable with respect to NR and is, therefore, used for multiple applications such as wet- suits,laptopsleevesanddurablemedicaldevices.Thelowelectricalconductivityof theseneoprenerubbersalsomakesthemusefulasaninsulatorinelectricalwiring. NR is a poor candidate for such applications because the high number of unsatu- rated carbon–carbon double bonds makes the elastomers too reactive with other chemicalstobewidelyusedforsuchapplications.Recentdevelopmentsusingbio- mass as a feedstock for base chemicals have led to the replacement of some syn- theticrubbersbybio-basedalternatives.Twoexamplesofsuchbio-basedsynthetic rubbers are discussed in Section 1.1. Even when using NR or bio-based elastomers in a rubber product, the final products are not completely bio-based due to large https://doi.org/10.1515/9783110639018-001 2 1 Sustainabilityinthedesignofrubbermaterials 10000 9000 8000 s n oy catibilit 7000 blina ber of scientific puh a focus on sustai 6543000000000000 umwit N 2000 1000 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Figure1.1:Theexponentialincreaseinscientificarticlethatfocusonsustainabilityoverthelast decadesasgeneratedfromthe‘webofknowledge’. Specialty thermosets Drop-in replacements B Natural rubber io -b a s e d Non recyclable Recyclable Crosslinked rubbers Fo Thermoplastics ss TPE, TPV il-fu e l-b a s e d Figure1.2:Theenvironmentalaxis.Thebio-basedcharacterandrecyclabilityofmaterialsasindi- vidualcomponentsofsustainability.ReproducedwithpermissionfromDr.MartijnBeljaars.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.