ebook img

Smart Energy Management: Data Driven Methods for Energy Service Innovation PDF

317 Pages·2022·11.187 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Smart Energy Management: Data Driven Methods for Energy Service Innovation

Kaile Zhou Lulu Wen Smart Energy Management Data Driven Methods for Energy Service Innovation Smart Energy Management · Kaile Zhou Lulu Wen Smart Energy Management Data Driven Methods for Energy Service Innovation KaileZhou LuluWen SchoolofManagement SchoolofManagement HefeiUniversityofTechnology HefeiUniversityofTechnology Hefei,Anhui,China Hefei,Anhui,China ISBN978-981-16-9359-5 ISBN978-981-16-9360-1 (eBook) https://doi.org/10.1007/978-981-16-9360-1 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface With the increasing penetration of new generation information technologies and newconceptsinenergysystem,suchasInternetofThings(IoT),bigdataanalytics, artificial intelligence, and blockchain, the traditional physical energy system is being transformed into a smart and interconnected energy ecosystem. Digital- ization, intellectualization, interconnection, interaction, openness, comprehensive- ness,decentralization,decarbonization,andpersonalizationaresomeofthetypical characteristicsofsmartenergysystem,alsoknownastheEnergyInternet. The transformation of energy system brings many new opportunities and chal- lengesforsmartenergymanagement.First,theboundaryofthesmartenergysystem isbeingbroken.Besidesthetraditionalpowergeneration,transmission,transforma- tion, distribution, and consumption stages, the smart energy system is integrating awiderrangeofelements.Smartgreenbuilding,smartgreentransportation,smart greenfactory,andsmartgreenindustrialparkareallinterconnectedwithsmartenergy system.Second,thescopeofenergyresourcesisincreasinglyexpanding.Forpower generationresources,itnotonlyincludestraditionalthermalpower,hydropower,and nuclearpower,butalsoallkindsofnewenergyresources,suchaswindpowerand solarpower.Moreover,alltypesofenergystoragedevicesandelectricvehicles(EVs) areemergingenergyresourcesinsmartenergysystem.Third,themulti-sourceand heterogeneousdataisanewkindofkeyresourceforachievingsmartenergymanage- ment.Indigitalizedsmartenergysystem,energybigdataincludebothinternaland externaldata.Thesourcesandformsofenergybigdataarevariousandcomplex,with rapid growth in scale. Data-driven decision making is a critical tool in supporting various smart energy management tasks. Finally, the demand for energy services is more diversified, personalized, and flexible in smart energy environment. Both supplysideanddemandsidemanagementofsmartenergysystemneedmoreinno- vative energy services. On the supply side, data-driven decision making can play an important role in achieving more efficient, flexible, and reliable management of microgrid, virtual power plant, energy hub, and EV charging. On the demand side, more accurate load classification and load forecasting based on data analysis can support more diversified and personalized integrated energy service, demand response,andenergyefficiencyimprovement. v vi Preface Therefore, data-driven smart energy management has great significance for the optimaloperationofsmartenergysystemandachievingthegoalsofenergyservice innovation.Itisalsoaninevitablewayforthelowcarbontransformationofenergy system, and peak carbon dioxide emissions and achieve carbon neutrality. To this end,thisbookintroducesaseriesofstate-of-the-artdata-drivenmethodsandappli- cations in smart energy management, which can provide ideas for the academic andindustrialcommunityandencouragefutureresearchanddevelopmentinrelated areas. The book is organized in 12 chapters. Chapter 1 introduces the research back- ground and presents the literature review. It also provides the data-driven smart energymanagementframework.Chapters2–4mainlyfocusontheloadclassifica- tionandelectricityconsumptionpatternmining.Chapter2discussestheresidential electricityconsumptionpatternminingbasedonfuzzyclusteringmodel.Chapter3 investigatestheloadprofilingconsideringshapesimilarityusingshape-basedclus- teringmethod.Chapter4presentsloadclassificationanddrivenfactorsidentification based on ensemble clustering method. Chapters 5 and 6 mainly investigate power demandandloadforecasting.Chapter5studiesthepowerdemandandprobability densityforecastingbasedondeeplearning.Chapter6presentstheloadforecastingof residentialbuildingsbasedondeeplearningmodel.Chapters7–9mainlyfocusonthe differenttypesofdemandresponse.Chapter7proposesanincentive-baseddemand responsemodelwithdeeplearningandreinforcementlearning.Chapter8provides a residential electricity pricing model based on multi-agent simulation. Chapter 9 investigates the integrated energy services based on integrated demand response. Chapter10providesanEVchargingschedulingmodelconsideringdifferentcharging demands. Chapters 11 and 12 mainly focus on the peer-to-peer (P2P) electricity trading in energy blockchain environment. Chapter 11 investigates the P2P elec- tricity trading pricing in energy blockchain environment. Chapter 12 provides a credit-basedP2Pelectricitytradingmodelinenergyblockchainenvironment. Tosummarize,thisbookexploresvarioussmartenergymanagementtaskswith variousdata-drivendecision-makingmethods.Thesmartenergymanagementtasks include load classification, load forecasting, demand response, integrated energy service,EVchargingscheduling,andP2Pelectricitytrading.Thedecision-making methodsincludefuzzyclustering,shape-basedclustering,ensembleclustering,deep learning, reinforcement learning, multi-agent simulation, game theory model, and optimizationmodel.Thisbookprovidesanimportantreferencefortheresearchand developmentofdata-drivenmethodsinsmartenergymanagementandpromotesthe developmentofsmartenergyindustry. Hefei,China KaileZhou November2021 LuluWen Acknowledgements Thisbookisasummaryoftheresearchresultsonsmartenergymanagementachieved byourresearchgroupinrecentyears.Manypeoplecontributedtothisbookinvarious ways.WewouldliketothankProf.ShanlinYang,Mr.JieChong,Ms.LexinCheng, Mr. Zhifeng Guo, Ms. Chen Wang, Ms. Yanni Jiang, Ms. Li Sun, Dr. Lanlan Li, Dr. Xinhui Lu, Dr. Tao Ding, Dr. Jun Li, Prof. Jianling Jiao, Dr. Zhen Shao from HefeiUniversityofTechnology,Prof.XiaolingZhangfromtheCityUniversityof Hong Kong, Mr. Jiong Zhou and Mr. Linhai Ye from Jizhong Energy Technology ServiceCo.,Ltd,Mr.HuizhouLiufromStateGridAnhuiElectricPowerCompany, andsomeothers,fortheircontributiontorelatedresearchprojectsorrelatedworks. This book is supported in part by the National Natural Science Foundation of China(71822104)andinpartbytheNaturalScienceFoundationofAnhuiProvince (2008085UD05).Theauthorsreallyappreciatetheirsupport. KaileZhou LuluWen vii About This Book Digitalization, intellectualization, interconnection, interaction, openness, compre- hensiveness,decentralization,decarbonization,andpersonalizationaresomeofthe typicalcharacteristicsofsmartenergysystem.Energybigdataresourcesanddata- driven methods provide new ways for achieving smart energy management. This book explores various smart energy management tasks with various data-driven decision-makingmethods.Thesmartenergymanagementtasksincludeloadclassi- fication,loadforecasting,demandresponse,integratedenergyservice,EVcharging scheduling,andP2Pelectricitytrading.Thedecision-makingmethodsincludefuzzy clustering, shape-based clustering, ensemble clustering, deep learning, reinforce- mentlearning,multi-agentsimulation,gametheorymodel,andoptimizationmodel. Thisbookprovidesanimportantreferencefortheresearchanddevelopmentofdata- drivenmethodsinsmartenergymanagementandpromotesthedevelopmentofsmart energyindustry. ix Contents 1 Introduction .................................................. 1 1.1 Background ............................................. 1 1.2 Data-DrivenSmartEnergyManagement ..................... 5 1.2.1 FrameworkofSmartEnergyManagement ............ 5 1.2.2 EnergyBigDataDrivenApplications ................ 6 1.2.3 BusinessandServiceModelInnovation .............. 7 1.3 LiteratureReview ........................................ 8 1.3.1 SmartEnergySystemManagement .................. 9 1.3.2 LoadCharacteristicRecognition .................... 11 1.3.3 DemandResponse ................................ 16 1.4 ScopeoftheBook ........................................ 21 References .................................................... 25 2 ResidentialElectricityConsumptionPatternMiningBased onFuzzyClustering ........................................... 33 2.1 Introduction ............................................. 33 2.2 Methodology ............................................ 34 2.2.1 Clustering ....................................... 34 2.2.2 FCMClustering .................................. 36 2.3 Model .................................................. 37 2.3.1 FuzzifierSelection ................................ 37 2.3.2 ClusterValidation ................................. 38 2.3.3 SearchingCapabilityOptimization .................. 39 2.4 ResultsandDiscussion .................................... 41 2.4.1 Data ............................................ 41 2.4.2 Discussion ....................................... 42 2.4.3 ResultsValidation ................................ 44 2.5 Conclusion .............................................. 46 References .................................................... 47 xi xii Contents 3 Load Profiling Considering Shape Similarity Using Shape-BasedClustering ........................................ 51 3.1 Introduction ............................................. 51 3.2 LiteratureReview ........................................ 52 3.3 Data .................................................... 55 3.3.1 DatasetA ........................................ 55 3.3.2 DatasetB ........................................ 55 3.4 FrameworkandMethodology .............................. 55 3.4.1 PrincipalComponentAnalysis ...................... 56 3.4.2 K-meansClustering ............................... 57 3.4.3 DynamicTimeWarping ........................... 58 3.4.4 Shape-BasedClustering ........................... 59 3.5 ResultsandDiscussion .................................... 62 3.5.1 ClusteringwiththeImprovedK-meansAlgorithm ..... 62 3.5.2 Shape-BasedPatternRecognition ................... 70 3.6 Conclusion .............................................. 75 References .................................................... 76 4 LoadClassificationandDrivenFactorsIdentificationBased onEnsembleClustering ........................................ 81 4.1 Introduction ............................................. 81 4.2 Methodology ............................................ 83 4.2.1 K-meansClustering ............................... 84 4.2.2 SpectralClustering ................................ 84 4.2.3 ConcurrentK-meansandSpectralClustering ......... 85 4.2.4 Multi-NominalLogisticRegression ................. 86 4.3 Data .................................................... 87 4.4 ResultsandDiscussion .................................... 87 4.4.1 LoadClassificationResult ......................... 87 4.4.2 Different Load Patterns in Weekdays andWeekends .................................... 90 4.4.3 InfluenceFactors ................................. 93 4.5 Conclusion .............................................. 97 References .................................................... 97 5 PowerDemandandProbabilityDensityForecastingBased onDeepLearning ............................................. 101 5.1 Introduction ............................................. 101 5.2 DeepLearningModel ..................................... 104 5.2.1 PowerDemandForecasting ........................ 105 5.2.2 PowerDemandProbabilityDensityForecasting ....... 109 5.3 CaseStudy .............................................. 112 5.3.1 Data ............................................ 112 5.3.2 FeatureEngineering ............................... 112 5.3.3 CaseStudy1 ..................................... 113 5.3.4 CaseStudy2 ..................................... 120

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.