ebook img

Six Lectures on Commutative Algebra PDF

411 Pages·1998·11.236 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Six Lectures on Commutative Algebra

Progress in Mathematics Volume 166 Series Editors H. Bass J. Oesterle A. Weinstein Six Lectures on Commutative Algebra J. Elias J.M. Giral R.M. Mir6-Roig S. Zarzuela Editors Springer Basel AG Editors: Dept. Algebra i Geometria Facultat de Matematiques Universitat de Barcelona Gran Via 585 E-08007 Barcelona 1991 Mathematics Subject Classification 13-02, 14-02, 18-02 A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Deutsche Bibliothek Cataloging-in-Publication Data Six lectures on commutative algebra / J. Elias ... ed. (Progress in mathematics; Vol. 166) ISBN 978-3-0346-0328-7 ISBN 978-3-0346-0329-4 (eBook) DOI 10.1007/978-3-0346-0329-4 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 1998 Springer Basel AG Originally published by Birkhauser Verlag in 1998 Softcover reprint of the hardcover 1s t edition 1998 Printed on acid-free paper produced of chlorine-free pulp. TCF 00 ISBN 978-3-0346-0328-7 987654321 Contents Preface................................................................... Xl Luchezar L. Avramov Infinite Free Resolutions Introduction .............................................................. 1 1 Complexes ............................................................ 4 1.1 Basic constructions ............................................... 4 1.2 Syzygies .......................................................... 7 1.3 Differential graded algebra ........................................ 10 2 Multiplicative Structures on Resolutions. . . . . . .. .. ... ... .. . . . . . . . . . . . . . 14 2.1 DG algebra resolutions ........................................... 14 2.2 DG module resolutions ........................................... 18 2.3 Products versus minimality ....................................... 21 3 Change of Rings ....................................................... 24 3.1 Universal resolutions.............................................. 24 3.2 Spectral sequences ................................................ 29 3.3 Upper bounds .................................................... 31 4 Growth of Resolutions ................................................. 34 4.1 Regular presentations. .. .. . .. . .. ... .. . . . . . . . . . . . . . . . .. . . . .. . .. . .. . 34 4.2 Complexity and curvature ........................................ 38 4.3 Growth problems ................................................. 41 5 Modules over Golod Rings ............................................. 44 5.1 Hypersurfaces .................................................... 44 5.2 Golod rings. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . .. .. . . . . . . . . . . . . . . . . . . 46 5.3 Golod modules ................................................... 50 6 Tate Resolutions ...................................................... 53 6.1 Construction ..................................................... 54 6.2 Derivations ....................................................... 58 6.3 Acyclic closures ................................................... 61 vi Contents 7 Deviations of a Local Ring ............................................. 64 7.1 Deviations and Betti numbers .................................... 65 7.2 Minimal models .................................................. 66 7.3 Complete intersections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.4 Localization ...................................................... 72 8 Test Modules .......................................................... 75 8.1 Residue field ...................................................... 75 8.2 Residue domains .................................................. 77 8.3 Conormal modules................................................ 83 9 Modules over Complete Intersections .................................. 87 9.1 Cohomology operators............................................ 87 9.2 Betti numbers .................................................... 92 9.3 Complexity and Tor .............................................. 95 10 Homotopy Lie Algebra of a Local Ring ................................ 99 10.1 Products in cohomology .......................................... 100 10.2 Homotopy Lie algebra............................................ 103 10.3 Applications ...................................................... 106 References ................................................................ 110 Mark L. Green Generic Initial Ideals Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 119 1 The Initial Ideal....................................................... 120 2 Regularity and Saturation............................................. 137 3 The Macaulay-Gotzmann Estimates on the Growth of Ideals........... 147 4 Points in p2 and Curves in p3 ........................................ 157 5 Gins in the Exterior Algebra .......................................... 172 6 Lexicographic Gins and Partial Elimination Ideals ..................... 177 References................................................................ 185 Craig Huneke Tight Closure, Parameter Ideals, and Geometry Foreword ................................................................. 187 1 An Introduction to Tight Closure ..................................... 187 2 How Does Tight Closure Arise? ....................................... 193 3 The Test Ideal I ....................................................... 200 Contents VB 4 The Test Ideal II: the Gorenstein Case 205 5 The Tight Closure of Parameter Ideals ................................ 210 6 The Strong Vanishing Theorem........................................ 215 7 Plus Closure .......................................................... 219 8 F-Rational Rings...................................................... 222 9 Rational Singularities .................................................. 225 10 The Kodaira Vanishing Theorem ...................................... 228 References ................................................................ 231 Peter Schenzel On the Use of Local Cohomology in Algebra and Geometry Introduction .............................................................. 241 1 A Guide to Duality .................................................... 243 1.1 Local Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 243 1.2 Dualizing Complexes and Some Vanishing Theorems.............. 249 1.3 Cohomological Annihilators ....................................... 256 2 A Few Applications of Local Cohomology .............................. 259 2.1 On Ideal Topologies .............................................. 259 2.2 On Ideal Transforms.............................................. 263 2.3 Asymptotic Prime Divisors ....................................... 265 2.4 The Lichtenbaum-Hartshorne Vanishing Theorem................. 272 2.5 Connectedness Results ............................................ 273 3 Local Cohomology and Syzygies ....................................... 276 3.1 Local Cohomology and Tor's...................................... 276 3.2 Estimates of Betti Numbers ...................................... 281 3.3 Castelnuovo-Mumford Regularity ................................. 282 3.4 The Local Green Modules ........................................ 286 References ................................................................ 290 Giuseppe Valla Problems and Results on Hilbert Functions of Graded Algebras Introduction .............................................................. 293 1 Macaulay's Theorem .................................................. 296 2 The Perfect Codimension Two and Gorenstein Codimension Three Case .............................................. 301 3 The EGH Conjecture.................................................. 311 viii Contents 4 Hilbert Function of Generic Algebras 317 5 Fat Points: Waring's Problem and Symplectic Packing................. 319 6 The HF of a CM Local Ring ........................................... 329 References................................................................ 341 Walmer V. Vasconcelos Cohomological Degrees of Graded Modules Introduction .............................................................. 345 1 Arithmetic Degree of a Module ........................................ 349 Multiplicity ........................................................... 349 Castelnuovo-Mumford regularity ...................................... 350 Arithmetic degree of a module......................................... 351 Stanley-Reisner rings .................................................. 352 Computation of the arithmetic degree of a module ..................... 353 Degrees and hyperplane sections ....................................... 354 Arithmetic degree and hyperplane sections ............................. 354 2 Reduction Number of an Algebra...................................... 357 Castelnuovo-Mumford regularity and reduction number................ 357 Hilbert function and the reduction number of an algebra ............... 358 The relation type of an algebra ........................................ 359 Cayley-Hamilton theorem ............................................. 360 The arithmetic degree of an algebra versus its reduction number ....... 361 Reduction equations from integrality equations ........................ 363 3 Cohomological Degree of a Module .................................... 364 Big degs ............................................................... 364 Dimension one ......................................................... 365 Homological degree of a module ....................................... 365 Dimension two ........................................................ 366 Hyperplane section .................................................... 367 Generalized Cohen-Macaulay modules ................................. 370 Homologically associated primes of a module .......................... 371 Homological degree and hyperplane sections ........................... 372 Homological multiplicity of a local ring ................................ 376 4 Regularity versus Cohomological Degrees.............................. 377 Castelnuovo regularity ................................................. 378 5 Cohomological Degrees and Numbers of Generators ................... 380 Contents IX 6 Hilbert Functions of Local Rings ...................................... 381 Bounding rules ........................................................ 382 Maximal Hilbert functions ............................................. 383 Gorenstein ideals ...................................................... 385 General local rings ..................................................... 385 Bounding reduction numbers .......................................... 386 Primary ideals ......................................................... 387 Depth conditions ...................................................... 388 7 Open Questions ....................................................... 389 Bounds problems ...................................................... 389 Cohomological degrees problems ....................................... 390 References ................................................................ 390 Index ..................................................................... 393

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.