ebook img

Simultaneous Multi-angle Measurements of Plasma Turblence at HAARP PDF

91 Pages·2013·1.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simultaneous Multi-angle Measurements of Plasma Turblence at HAARP

Eastern Michigan University DigitalCommons@EMU Master's Theses, and Doctoral Dissertations, and Master's Theses and Doctoral Dissertations Graduate Capstone Projects 7-2012 Simultaneous multi-angle measurements of plasma turblence at HAARP Naomi Watanabe Follow this and additional works at:http://commons.emich.edu/theses Part of thePhysics Commons Recommended Citation Watanabe, Naomi, "Simultaneous multi-angle measurements of plasma turblence at HAARP" (2012).Master's Theses and Doctoral Dissertations. 448. http://commons.emich.edu/theses/448 This Open Access Thesis is brought to you for free and open access by the Master's Theses, and Doctoral Dissertations, and Graduate Capstone Projects at DigitalCommons@EMU. It has been accepted for inclusion in Master's Theses and Doctoral Dissertations by an authorized administrator of DigitalCommons@EMU. For more information, please [email protected]. Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP by Naomi Watanabe Thesis Submitted to the Department of Physics and Astronomy Eastern Michigan University In partial fulfillment of the requirement for the degree of MASTER OF SCIENCE in Physics Thesis Committee: James P. Sheerin, PhD, Advisor Alexandria Oakes, PhD, Department Head J. Marshall Thomsen, PhD July 2012 Ypsilanti, Michigan ACKNOWLEDGEMENTS I would like to thank my research advisor, Dr. Sheerin. He helped and encouraged my academic and research area throughout my graduate school time. I appreciate all of his support. I would like to thank Dr. Oakes and Dr. Thomsen. I appreciate their kindness. I also would like to thank my fellow graduate students of Department of Physics and Astronomy. They always encouraged my study. I also would like to thank Eastern Michigan University for providing me a great atmosphere to study. I owe a special thanks to my parents for their support and encouragement. ii ABSTRACT We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts. iii CONTENTS Acknowledgements…………………………………………………………………...... ii Abstract…………………………………………………………………………............ iii Table of Contents………………………………………………………………………. iv List of Tables…………………………………………………………………………… v List of Figures………………………………………………………………………….. vi Introduction……………………………………………………………………………... 1 Background…………………………………………………………. ............................. 3 Experimental Setup…………………………………………….. ...................................22 Results………………………………………………………………. ............................36 Discussion………………………………………………………………. ......................55 Conclusions………………………………………………………….. .......................... 73 References………………………………………………………… ...............................76 iv LIST OF TABLES Table Page 3.1. Experiment details ...........................................................................................23 3.2. Frequency and angle ........................................................................................23 3.3. Space weather for experimental runs ...............................................................30 4.1. Observations and comments for 25 Jul 2011 ...................................................44 4.2. Observations for 03:05:00 on 25 Jul 2011 .......................................................46 4.3. Observations of OPL 25 Jul 2011 ....................................................................49 v LIST OF FIGURES Figure Page 2.1. Particle density versus height.............................................................................4 2.2. Ionization ..........................................................................................................4 2.3. Electric field in plasma ......................................................................................5 2.4. Gyroscopic motion ............................................................................................6 2.5. Geometry of electromagnetic wave ...................................................................8 2.6. Dispersion relation ............................................................................................8 2.7. Parametric Decay ...............................................................................................9 2.8. Parallelogram method PDI ...............................................................................10 2.9. Parallelogram method LDI ..............................................................................11 2.10. Reflection of pump wave .................................................................................13 2.11. Power spectral density ...................................................................................16 2.12. Intensity versus frequency cascade ..................................................................16 2.13. Schematic of decay ..........................................................................................17 3.1. HAARP beam pattern ......................................................................................24 3.2. HAARP intensity pattern .................................................................................24 3.3. HAARP gain versus angle ...............................................................................24 vi Figure Page 3.4. HAARP transmission angles in experiment ....................................................25 3.5. Diagnostic schematic for experiments .............................................................26 3.6. Example of MUIR radar data spectra ..............................................................27 3.7. Example of SuperDARN Kodiak data .............................................................29 3.8. Ionogram ..........................................................................................................32 3.9. Riometer data ...................................................................................................34 3.10. Magnetometer data...........................................................................................35 4.1. Spectra for HF 14 degrees................................................................................38 4.2. Spectra for HF 7 degrees..................................................................................39 4.3. Spectra for HF 11 degrees................................................................................40 4.4. Spectra for HF 11 degrees UHF 12 degrees ....................................................44 4.5. Spectra for HF 11 degrees UHF 15 degrees ....................................................47 4.6. Spectra for HF 11 degrees UHF 15 degrees coexistence .................................48 4.7. Spectra for HF 11 degrees UHF 15 degrees OPL ............................................50 4.8. Ionogram showing severe absorption ..............................................................52 4.9. Ionograms for July 25, 2011 ............................................................................53 vii Figure Page 4.10. Ionograms for July 25, 2011 showing HF reflection .......................................54 5.1. Spectra for HF 11 degrees UHF 15 degrees ....................................................56 5.2. Spectra for HF 14 degrees UHF 15 degrees ...................................................59 5.3. Spectra for HF 11 degrees UHF 15 degrees ..................................................61 5.4. Spectra for HF 7 degrees UHF 15 degrees .....................................................62 5.5. Spectra for HF 11 degrees UHF 15 degrees ...................................................63 5.6. Spectra for HF 7 degrees UHF 15 degrees ....................................................65 5.7. Spectra for HF 7 degrees UHF 15 degrees .....................................................66 5.8. Raytracing of HF propagation .........................................................................67 5.9. Riometer trace for July 25, 2011......................................................................71 viii 1. Introduction The study of the ionosphere is useful for various fields, such as, navigation (Global Positioning System) and satellite communications systems. High frequency (HF) transmission of radio waves has long been employed both for communication and as a technique to research the ionosphere because of its frequency range being comparable to the plasma frequency range in the ionosphere. Furthermore, transmitting high power HF radiowaves may be used to produce irregularities that simulate natural turbulence in a controlled experiment. Transmitting HF radiowaves with various parameters and high power in the ionosphere is important to the study of the ionosphere. The High Frequency Active Auroral Research Program (HAARP), in Gakona, Alaska, has the highest power and most versatile system for the HF radio in the world. The HAARP HF transmitter, called Ionospheric Research Instrument (IRI), can transmit HF waves of 2.8 - 15 MHz into the ionosphere, with a peak power of up to 3600kW at transmitter power, which, including the gain of the antenna system, results in an Effective Radiated Power (ERP) of up to 3600 MW. The objective of these experiments is to study Strong Langmuir Wave Turbulence produced by high power HF transmissions in the ionosphere. Two three-wave decays processes —the Parametric Decay Instability and the Langmuir Decay Instability, along with the Modulational Instability, which results in cavitation of the ionospheric plasma density—are studied by means of corresponding spectral observations. The versatile capabilities of the Ultra High Frequency (UHF) phased array diagnostic radar called Modular UHF Ionospheric Radar (or 1

Description:
receivers to record stimulated electromagnetic emissions (SEE). We selected the O-mode to observe the excitation of instabilities in the .. about 300 kHz higher than the frequency of the HF pump waves (Mishin et al., 1997).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.