ebook img

Simulation of Shale Gas Reservoirs Incorporating Appropriate Pore Geometry and the Correct ... PDF

297 Pages·2014·6.78 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulation of Shale Gas Reservoirs Incorporating Appropriate Pore Geometry and the Correct ...

Final Reportt to   SIMUULATIOON OF SHHALE GGAS RESSERVOIRRS INCOORPORAATING AAPPROPPRIATEE PORE GGEOMEETRY ANND THHE CORRRECT PHHYSICS OF CAPPILLARIITY ANDD FLUIDD TRAANSPORRT Prroject 099122.111.FINAL Septeember 7, 20114 Deepakk Devegowdaa, Faruk Civaan, Richard Siigal Boarrd of Regentss, University of Oklahomaa 2001 David L. Boren Blvd, 3 Partners Plaace, Norman,, OK 73019 Phone: 405.325.60029 Website: http://ors.ou.edu ii   LEGAL NOTICE This report was prepared by The Board of Regents, University of Oklahoma as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of any of the entities: a. MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED WITH RESPECT TO ACCURACY, COMPLETENESS, OR USEFULNESS OF THE INFORMATION CONTAINED IN THIS DOCUMENT, OR THAT THE USE OF ANY INFORMATION, APPARATUS, METHOD, OR PROCESS DISCLOSED IN THIS DOCUMENT MAY NOT INFRINGE PRIVATELY OWNED RIGHTS, OR b. ASSUMES ANY LIABILITY WITH RESPECT TO THE USE OF, OR FOR ANY AND ALL DAMAGES RESULTING FROM THE USE OF, ANY INFORMATION, APPARATUS, METHOD, OR PROCESS DISCLOSED IN THIS DOCUMENT. THIS IS A FINAL REPORT. THE DATA, CALCULATIONS, INFORMATION, CONCLUSIONS, AND/OR RECOMMENDATIONS REPORTED HEREIN ARE THE PROPERTY OF THE U.S. DEPARTMENT OF ENERGY. REFERENCE TO TRADE NAMES OR SPECIFIC COMMERCIAL PRODUCTS, COMMODITIES, OR SERVICES IN THIS REPORT DOES NOT REPRESENT OR CONSTIITUTE AND ENDORSEMENT, RECOMMENDATION, OR FAVORING BY RPSEA OR ITS CONTRACTORS OF THE SPECIFIC COMMERCIAL PRODUCT, COMMODITY, OR SERVICE. iii iv   ABSTRACT In the last decade, production of hydrocarbons from organic rich shale reservoirs has exploded onto the world energy landscape. These unconventional reservoirs are now recognized as forming an abundant worldwide resource that has already significantly changed the face of the energy landscape in the United States. Initially, production from these reservoirs was mainly dry gas, but exploration and development activity has largely moved to production of condensates and oils in many parts of the continental United States. The focus in this chapter is the modeling and simulation of transport and storage in shale reservoirs. The economic development of shale reservoirs is largely attributed to the introduction and maturation of two technologies: massive hydraulic fracturing and long reach horizontal wells. Because of the very low permeability of shales, these completion and drilling schemes are considered to be the predominant reasons for the successful development of shale and tight gas and oil resources in the US. In general, because of the ultra‐low permeability of shales, the well architecture and the fracture geometry, including the hydraulic fracture and re‐activated natural fracture networks, produced by the stimulations are considered to completely define well drainage volumes within the reservoir. The very low matrix permeability of the shale reservoir rocks is a consequence of a pore geometry that includes pores less than an order of magnitude larger than a methane molecule. Studies have shown that pore proximity effects in nanopores can potentially alter the behavior of reservoir fluids. Fluid phase behavior and transport deviate significantly from the corresponding formulations for conventional rocks that are characterized by significantly larger pores. Under some conditions, the molecule‐wall interactions tend to be more important than the inter‐molecular interactions within the fluid that have traditionally formed the basis of quantifying fluid PVT properties, transport and storage. For shales, however, the small size of the pores restricts the pore to contain only a relatively few molecules whose behavior in this confined environment may be too complex to describe using classical thermodynamics. v   Organic shale reservoirs by their nature contain significant volumes of organic material and have matured enough to produce and expel large volumes of hydrocarbons. They therefore have both a complex wettability structure, support significant hydrocarbon storage in an adsorbed state on some pore walls, and at some stage in their evolution had extensive natural fracture systems produced by the process of expelling the hydrocarbons. For a simulator to fully capture the complexity of organic rich shale reservoirs, it must accommodate potentially two fracture systems with different properties, and at least two pore systems with dramatically different wettability character and pore size distributions. The connectivity of these various reservoir components will differ among reservoirs and often may not be well known so must remain a parameter that can be adjusted in history matching. Besides a more complex micro‐geometry at a minimum the equations that define hydrocarbon storage, transport, and the equations of state must be modified, the assumption of instantaneous capillary equilibrium must be relaxed, and parameters such as permeability and porosity will be explicit functions of pore pressure, not just effective pressure. vi   TABLE OF CONTENTS ABSTRACT ................................................................................................................................................................. IV  TABLE OF CONTENTS .......................................................................................................................................... VI  LIST OF FIGURES .................................................................................................................................................... XI  LIST OF TABLES ..................................................................................................................................................... XX  EXECUTIVE SUMMARY .................................................................................................................................... XXII  CHAPTER 1: SIMULATION OF SINGLE‐COMPONENT GAS TRANSPORT IN SHALES ................. 1  1.1. Rarefication and slippage effects on gas flow ................................................................................. 1  1.1.1. Mean free path of natural gases .................................................................................................... 1  1.1.2. Gas flow in extremely narrow capillaries ................................................................................. 6  1.1.3. Gas flow through extremely‐low permeable media .......................................................... 10  1.2. Results and discussion ........................................................................................................................... 16  1.2.1 Impact to producers ......................................................................................................................... 20  1.3 Conclusions .................................................................................................................................................. 22  CHAPTER 2: CAPILLARY NON‐EQUILIBRIUM FOR GAS‐WATER FLOWS IN NANOPOROUS SHALES ....................................................................................................................................................................... 23  2.1 Non‐instantaneous capillary equilibrium ....................................................................................... 23  2.1.1. Transient behavior in Cylindrical Capillary Tubes ............................................................ 24  2.1.2. Relaxation of Saturation, Capillary pressure, and Relative Permeability ................ 26  2.1.3. Modeling Water Displacement by Gas .................................................................................... 30  2.2. Modeling the Relaxation Phenomenon in Reservoir Simulators ......................................... 35  2.3 Correlation of Relaxation Time in Imbibition and Drainage Processes ............................. 36  2.4 Results and Discussion: Effect of Relaxation on Transient Fluid Displacement ............ 40  2.4.1 Impact to Producers ......................................................................................................................... 43  2.5 Conclusions .................................................................................................................................................. 44  CHAPTER 3: EFFECT OF PORE PROXIMITY ON FLUID BEHAVIOR AND PRODUCTION TRENDS IN SHALE GAS‐CONDENSATE RESERVOIRS ........................................................................... 45  3.1 Introduction ................................................................................................................................................. 45  3.2 Behavior of Fluids in Nanoporous Confinement .......................................................................... 48 vii   3.3 Effects of confinement on critical properties ................................................................................ 49  3.3.1 Extension of critical property variations to other hydrocarbon species .................. 53  3.3.2 Effects of confinement on real gas deviation factor ........................................................... 55  3.4 Effect of confinement on phase behavior of gas‐condensate fluids .................................... 56  3.5 Results and Discussion: Gas Condensate Well Performance under the Effects of Pore Proximity .............................................................................................................................................................. 62  3.5.1 Impact to Producers ......................................................................................................................... 71  3.6 Conclusions .................................................................................................................................................. 72  CHAPTER 4: IMPACT OF ADSORPTION ON MULTI‐COMPONENT FLUID TRANSPORT IN SHALES ....................................................................................................................................................................... 74  4.1 Adsorbed Phase Transport .................................................................................................................... 74  4.2 Capillary Tube Model ............................................................................................................................... 75  4.3 Single Component Adsorption Isotherm ......................................................................................... 77  4.4 Gas Flow in a Single Capillary Tube ................................................................................................... 79  4.4.1 Effective Hydraulic Radius ............................................................................................................ 79  4.4.2 Free Gas Flow ...................................................................................................................................... 81  4.4.3 Diffusion in Adsorbed Phase ........................................................................................................ 82  4.5 Gas Flow in Bundle of Variable Size Capillary Tubes ................................................................. 85  4.6 Case Study: Gas Flow in a Single Capillary Tube .......................................................................... 85  4.7 Flow Through Porous Media ................................................................................................................ 86  4.7.1 Adsorbed Phase Diffusion ............................................................................................................. 89  4.8 Results and Discussion ............................................................................................................................ 91  4.8.1 Transport for a Bundle of Variable Size Tubes .................................................................... 91  4.8.2 Determination of the Equivalent Pore Size ............................................................................ 94  4.9 Impact to Producers ................................................................................................................................. 98  4.10 Conclusions ................................................................................................................................................ 99  CHAPTER 5: MULTI‐COMPONENT AND MULTIPHASE FLUID FLOW IN SHALES .................. 101  5.1 Multicomponent Adsorption .............................................................................................................. 101  5.3 Phase Behavior in Nanopores ............................................................................................................ 102  5.4 Compositional Modeling of Fluid Mixture .................................................................................... 103  5.6 Phase Behavior of Fluid Confined in Nanopores ....................................................................... 105 viii   5.7 Results and Discussion: Compositional Variations in Produced Fluids ........................... 109  5.7.1 Synthetic oil Case Study ............................................................................................................... 109  5.7.2 Black oil Case Study ........................................................................................................................ 118  5.8 Impact to Producers ............................................................................................................................... 124  5.9 Conclusions ................................................................................................................................................ 125  CHAPTER 6: THE ROLE OF MIXED WETTABILITY, NATURAL FRACTURES, ADSORPTION AND DIFFUSION ON SHALE WELL PRODUCTIVITY AND HISTORY MATCHING ..................... 127  6.1 Natural Fractures in Shales ................................................................................................................. 127  6.2 Wettability of Shales............................................................................................................................... 128  6.3 The Role of Adsorption and Diffusion in Shale Gas Production .......................................... 129  6.3.1 Reservoir Simulation Modeling Approaches ........................................................................... 129  6.3.2 Modeling Basis and Assumptions ............................................................................................ 131  6.3.3 Effect of Adsorption on Shale Gas Production .................................................................... 136  6.3.4 Effect of Molecular Diffusion on Shale Gas Production .................................................. 139  6.4 Results and Discussion: History Matching and Production Data Analysis ..................... 145  6.4.1 History Matching for Different Simulation Approaches ................................................. 145  6.4.2 Comparison of the Simulation Modeling Approaches ..................................................... 147  6.5 Impact to Producers ............................................................................................................................... 158  6.6 Conclusions ................................................................................................................................................ 160  CHAPTER 7: THE IMPACT OF PORE SIZE AND KEROGEN MATURITY ON THE BEHAVIOR OF WATER AND HYDROCARBON IN ORGANIC KEROGEN NANOPORES IN SHALES .................. 161  7.1 Background ................................................................................................................................................ 162  7.2 Pore Scale Models of Kerogen ............................................................................................................ 167  7.2.1 Description of Kerogen Models with Different Degrees of Maturity ........................ 167  7.2.2 Graphite Slit Pore Model Description ..................................................................................... 169  7.2.3 Organic Pore Model ........................................................................................................................ 170  7.2.4 Molecular Interactions for Water and Pore Walls ............................................................ 171  7.3 Behavior of Water in Organic Pores ................................................................................................ 173  7.3.1 Pore Filling Effect ............................................................................................................................ 173  7.3.2 Influence of Surface Roughness on Water Adsorption ................................................... 178  7.3.3 The Role of Kerogen Maturity on Water Uptake ............................................................... 180 ix   7.4 Results and Discussion: Kerogen Maturity and the Behavior of Water ........................... 182  7.5 Dynamics of Water and Octane in Kerogen and Graphite Pores ........................................ 183  7.5.1 Model Description: Octane and Water in Kerogen Nanopores ................................... 183  7.6 Results and Discussion .......................................................................................................................... 186  7.6.1 Behavior of Water and Octane in Kerogen and Graphite Pores .................................. 186  7.6.2 Behavior of Water: Formation of Water Clusters ............................................................. 192  7.6.3 Potential Wettability Alternation Due to Surface Activation ....................................... 193  7.6.4 Presence of Octane and Water in the Kerogen Body ....................................................... 193  7.6.5 Dependence of Adsorption Characteristics on Surface Roughness ........................... 194  7.7 Impact to Producers ............................................................................................................................... 198  7.8 Conclusions ................................................................................................................................................ 198  CHAPTER 8: EFFECTIVE UPSCALING OF HETEROGENEOUS NANOSTRUCTURES IN SHALE POROUS MEDIA .................................................................................................................................................... 200  8.1 Shale Petrophysics for Flow Simulations ...................................................................................... 205  8.1.1. Heterogeneity and Connectivity .............................................................................................. 205  8.1.2. Adsorption......................................................................................................................................... 207  8.1.3. Nanofluidics ...................................................................................................................................... 208  8.2 Upscaling arrangements of shale nanostructures into a REV .............................................. 210  8.3.1 Simulation Setup for Upscaling Nanostructures to REV ................................................ 212  8.3.2. Validation of the Simulation Setup ......................................................................................... 214  8.3.3. Upscaling Heterogeneity and Connectivity ......................................................................... 217  8.3.4. Upscaling adsorption and flow through nanoporous media ....................................... 225  8.4 Upscaling Arrangements of Shale REV into Shale Matrix ...................................................... 234  8.4.1. Simulation setup for upscaling shale REV to reservoir‐scale ..................................... 235  8.4.2. Upscaling heterogeneous distributions of shale REV’s ................................................. 235  8.4 Conclusions ................................................................................................................................................ 241  CHAPTER 9: TECHNOLOGY TRANSFER ACTIVITIES ........................................................................... 243  9.1 Project Website ........................................................................................................................................ 243  9.2 Conferences/Workshops ..................................................................................................................... 243  9.3 Publications ................................................................................................................................................ 244  9.3.1 Thesis and Dissertations .............................................................................................................. 244 x   9.3.2 Book Chapter ..................................................................................................................................... 245  9.3.3 Refereed Publications ................................................................................................................... 245  9.3.4 Conference Proceedings ............................................................................................................... 245  9.3.5 Current Publications in Progress ............................................................................................. 249  9.3.6 Unpublished Conference Proceedings ................................................................................... 250  9.3.7 Invited Seminars and Lectures .................................................................................................. 251  NOMENCLATURE ................................................................................................................................................ 253  REFERENCES ......................................................................................................................................................... 255

Description:
these reservoirs was mainly dry gas, but exploration and development activity Organic shale reservoirs by their nature contain significant volumes of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.