ebook img

Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d'Alene River PDF

176 Pages·2008·8.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d'Alene River

Prepared in cooperation with the Idaho Department of Environmental Quality, Basin Environmental Improvement Commission, and the U.S. Environmental Protection Agency Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d’Alene River, Idaho Scientific Investigations Report 2008–5093 U.S. Department of the Interior U.S. Geological Survey Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d’Alene River, Idaho By Charles Berenbrock and Andrew W. Tranmer Prepared in cooperation with the Idaho Department of Environmental Quality, Basin Environmental Improvement Commission, and the U.S. Environmental Protection Agency Scientific Investigations Report 2008–5093 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Berenbrock, Charles, and Tranmer, A.W., 2008, Simulation of flow, sediment transport, and sediment mobility of the Lower Coeur d’Alene River, Idaho: U.S. Geological Survey Scientific Investigations Report 2008–5093, 164 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................2 Purpose and Scope ..............................................................................................................................5 Description of Study Reach ................................................................................................................5 Previous Investigations.................................................................................................................................7 FEMA Model (1981) ...............................................................................................................................7 USGS Model (1992) ...............................................................................................................................7 University of Idaho Model (2004) ........................................................................................................7 Golder Associates Model (2005) ........................................................................................................8 Reach Characterization ................................................................................................................................8 Flow Types ..............................................................................................................................................8 River Stage .............................................................................................................................................9 River Discharge ...................................................................................................................................13 Channel Cross Sections .....................................................................................................................13 Streambed Samples ...........................................................................................................................16 Sediment-Transport Characteristics ........................................................................................................18 Suspended Sediment .........................................................................................................................18 Total Sediment Discharge .................................................................................................................18 Numerical Modeling ....................................................................................................................................22 HEC-6 Model Implementation ...........................................................................................................22 Model Cross Sections ...............................................................................................................23 Model Boundaries .....................................................................................................................23 Model Calibration ......................................................................................................................23 Simulation of Erosion, Deposition, and Sediment Transport under Varying Conditions ......................................................................................................................27 Dredging in Dudley Reach ...............................................................................................27 Reduction in Sediment Discharge Input .......................................................................29 Model Limitations.......................................................................................................................30 FASTMECH Model Implementation .................................................................................................30 Model Grid and Bathymetric Interpolation ............................................................................31 Model Boundaries .....................................................................................................................31 Model Calibration ......................................................................................................................33 Results of Calibration Simulations ..........................................................................................34 Flow Depth .........................................................................................................................34 Flow Velocity ......................................................................................................................34 Shear-Stress ......................................................................................................................42 Sediment Mobility .............................................................................................................42 Model Limitations................................................................................................................................46 Summary........................................................................................................................................................47 Acknowledgments .......................................................................................................................................48 References Cited..........................................................................................................................................49 Glossary .........................................................................................................................................................53 iv Contents—Continued Appendix A. Locations of Cross Sections on the Coeur d’ Alene River, Idaho ..............................55 Appendix B. Particle-Size Analysis of Streambed Samples in the Dudley Reach, Coeur d’Alene River, Idaho ...........................................................................................................59 Appendix C. Listing of HEC-6 Model Input File for 1999 .....................................................................69 Appendix D. Grain Shear Stress, Largest Mobilized Particle, and Particle Classification for FASTMECH simulations 1 through 5, Coeur d'Alene River, Idaho ..................................161 Figures Figure 1. Map showing location of study area and U.S. Geological Survey gaging stations, Coeur d’Alene River basin, Idaho ……………………………………… 3 Figure 2. Map showing location of study area, U.S. Geological Survey gaging stations, river miles, and lateral lakes, Coeur d’Alene River basin, Idaho ………………… 4 Figure 3. Diagram showing water-surface curves along a constant, uniform, mild-sloped channel …………………………………………………………………………… 8 Figure 4. Graph showing simulated water-surface curves for a discharge of 25,000 cubic feet per second in the lower Coeur d’Alene River, Idaho …………………… 9 Figure 5. Graph showing daily water levels on Coeur d’Alene Lake at Coeur d’Alene (12415500), Idaho ………………………………………………………………… 10 Figure 6. Graph showing water-surface elevations and discharge at selected gaging stations on the Coeur d’Alene River and Coeur d’Alene Lake, 1994–2000 ………… 11 Figure 7. Graphs showing relation between water-surface elevation for Coeur d’Alene Lake, and the Harrison and Rose Lake gaging stations in the study reach, Coeur d’Alene River, Idaho ……………………………………………………… 12 Figure 8. Graphs showing discharge at selected gaging stations on the Coeur d’Alene River, Idaho ……………………………………………………………………… 14 Figure 9. Graphs showing comparison of selected cross sections in the braided reach on the Coeur d’Alene River, Idaho ………………………………………………… 15 Figure 10. Graphs showing sediment-transport curves for suspended sand discharges at selected sites in the study area, Coeur d’Alene River, Idaho …………………… 19 Figure 11. Graphs showing sediment-transport curves for suspended silt and clay (fines) discharges at selected sites in the study area, Coeur d’Alene River, Idaho ……… 20 Figure 12. Graphs showing rotal sediment discharge (Q) and suspended-sand discharge T (Q ) curves at selected sites in the study area, Coeur d’Alene River, Idaho …… 21 sand Figure 13. Graph showing calibrated Manning’s n values (roughness coefficients) of the streambed for modeled reaches, Coeur d’Alene River, Idaho …………………… 25 Figure 14. Graphs showing HEC-6 simulated and measured sediment sand discharge and daily mean discharge for calendar year 1999 at the Coeur d’Alene River at Rose Lake gaging station (12413810) and Coeur d’Alene River near Harrison gaging station (12413860), Coeur d’Alene River, Idaho ………………… 26 Figure 15. Graph showing simulated sediment discharge of sand and daily mean discharge at cross section 156.504 dredged reach for calendar years 2000 and 1997, Coeur d’Alene River near Dudley, Idaho ………………………………………… 28 v Figures—Continued Figure 16. Graph showing simulated streambed elevations before and after streambed dredging and at the end of simulation for calendar years 2000 and 1997, Coeur d’Alene River near Dudley, Idaho ………………………………………… 29 Figure 17. Model grid of the multi-dimensional flow model, Coeur d’Alene River near Dudley, Idaho ……………………………………………………………………… 32 Figure 18. Graphs showing simulated water-surface elevations from FASTMECH and HEC-6 models and mean absolute difference error, Coeur d’Alene River near Dudley, Idaho ……………………………………………………………………… 35 Figure 19. Aerial photographs showing simulated depths from FASTMECH for five calibration simulations, Coeur d’Alene River near Dudley, Idaho ………………… 36 Figure 20. Aerial photographs showing simulated velocities from FASTMECH for five calibration simulations, Coeur d’Alene River near Dudley, Idaho ………………… 38 Figure 21. Aerial photographs showing velocity vectors and average and maximum velocities at cross sections for a river discharge of 28,900 cubic feet per second in the dredged reach, Coeur d’Alene River near Dudley, Idaho ………… 40 Figure 22. Map showing velocity vectors for a river discharge of 28,900 cubic feet per second in a river bend near cross section 158.259, Coeur d’Alene River near Dudley, Idaho ……………………………………………………………………… 41 Figure 23. Aerial photographs showing simulated bed shear stresses from FASTMECH for five calibration simulations, Coeur d’Alene River near Dudley, Idaho ………… 44 Tables Table 1. Elevation of river and lake stage datums at U.S. Geological Survey gaging stations on the Coeur d’Alene River and Coeur d’Alene Lake, Idaho ……………… 10 Table 2. Median diameter and particle-size classification of streambed samples, Coeur d’Alene River, Idaho ……………………………………………………… 16 Table 3. Particle-size classification ……………………………………………………… 17 Table 4. Measured and HEC-6 simulated water-surface elevations and differences in four model calibrations for five gaging stations in the modeled reach, Coeur d’Alene River, Idaho ……………………………………………………………… 24 Table 5. Boundary conditions for FASTMECH model calibrations, Coeur d’Alene River near Dudley, Idaho ……………………………………………………………… 33 Table 6. Calibrated drag coefficient and lateral-eddy viscosity and differences between model simulated and observed HEC-6 water-surface elevations for five calibrations, Coeur d’Alene River near Dudley, Idaho ……………………… 34 Table 7. Critical shear stress by particle-size classification for determining approximate condition for sediment mobility at 20 degrees Celsius ……………… 43 Table 8. Grain shear stress, largest mobilized particle, and particle classification for a factor of 0.5, 1.0, and 1.5 times the dune height and (or) dune length for simulation 5 (river discharge, 28,900 cubic feet per second), Coeur d’Alene River near Dudley, Idaho ………………………………………………………… 46 vi Conversion Factors, Datums, and Abbreviations and Acronyms Inch/Pound to SI Multiply By To obtain cubic foot per second (ft3/s) 0.02832 cubic meter per second cubic yard (yd3) 0.7646 cubic meter foot (ft) 0.3048 meter foot per foot (ft/ft) 1.0 meter per meter foot per second (ft/s) 0.3048 meter per second foot per squared second (ft/s2) 0.305 meter per squared second inch (in.) 2.54 centimeter inch (in.) 25.4 millimeter mile (mi) 1.609 kilometer Pascal (Pa) 1.0 Newtons per square meter pound per cubic foot (lb/ft3) 0.00000624 milligram per liter pound per foot-squared second [lb/(ft-s2)] 1.488 Newtons per square meter square mile (mi2) 2.590 square kilometer ton 907.185 kilogram ton 0.907 metric ton ton per day (ton/d) 0.01050 kilogram per second SI to Inch/Pound Multiply By To obtain gram (g) 0.03527 ounce, avoirdupois kilogram per cubic meter (kg/m3) 0.063 pound per cubic feet kilogram per meter per squared second [kg/(m-s2)] 1.0 Newtons per squared meter meter (m) 3.281 foot meter per second (m/s) 3.281 foot per second meter per second squared (m/s2) foot per second squared millimeter (mm) 0.039 inch Newtons per square meter (N/m2) 0.6719 pound per foot squared per second Newtons per square meter (N/m2) 1.0 Pascal (Pa) square meter per second (m2/s) 1.076 square foot per second Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F=(1.8×°C)+32. Concentrations of suspended sediments in water are given in milligrams per liter (mg/L). Datums Vertical coordinate information refers to the North American Vertical Datum of 1988 (NAVD 88). Horizontal coordinate information refers to the North American Datum of 1983 (NAD 83). National Geodetic Vertical Datum of 1929 (NGVD 29) refers to a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada. Lake datum is vertical datum used by the AVISTA Corporation and others in the Coeur d’Alene area. To obtain elevations in NAVD 88, add 0.80 ft to lake datum elevations. vii Conversion Factors, Datums, and Abbreviations and Acronyms—Continued Abbreviations and acronyms Abbreviations and acronyms Meaning 1D one-dimensional 2D two-dimensional 2.5D two and one-half dimensional ADVM acoustic Doppler velocity meter FEMA Federal Emergency Management Agency GPS Global Positioning System LIDAR Light Detection and Ranging M1 curve backwater curve M2 curve free-flowing water curve (above critical depth) MAD mean absolute difference MD maximum difference MD_SWMS Multi-Dimensional Surface Water Modeling System NAIP National Agriculture Imagery Program NF North Fork RM river mile SF South Fork SI International System USGS U.S. Geological Survey WY water year viii This page intentionally left blank.

Description:
For more information on the USGS--the Federal source for science about the .. iv. Appendix A. Locations of Cross Sections on the Coeur d' Alene River, . pound per cubic feet . flood control structures in the channel, periodic flooding of developed flow hydraulic and sediment-transport models of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.